Supporting Information

Palladium Nanoparticles Encapsulated in Magnetically Separable Polymeric Nanoreactors

Ester Weiss, Bishnu Dutta, Yafit Schnell and Raed Abu-Reziq*

Institute of Chemistry, Casali Center of Applied Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Figure S1. SEM images of polyurea nanocapsules prepared using different amine and isocyanate monomers. a. HDI/HMDA; b. TDI/HMDA; c. MBDI/HMDA; d. PAPI 27/HMDA; e. HDI/DETA; f. TDI/DETA; g MBDI/DETA; h. PAPI 27/DETA.

Figure S2. SEM images of polyurea nanocapsules prepared using different PAPI 27:HMDA molar ratio. a. 1:0.4; b.1:0.7; c. 1:0.9; d. 1:1.0; e. 1:1.25; f. 1:1.5; g.1:1.73.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2014

_

Table S1. Average size distribution measurements of polyurea nanocapsules prepared from different isocyanate and amine monomers

Entry	amine/isocyanate monomer	average size distribution (nm)
1	HDI/HMDA	343
2	TDI/HMDA	389
3	MBDI/HMDA	195
4	PAPI 27/HMDA	121
5	HDI/DETA	183
6	TDI/DETA	396
7	MBDI/DETA	171
8	PAPI 27/DETA	106

Table S2. Average size distribution measurements of polyurea nanocapsules using different PAPI 27/HMDA molar ratio.

Entry	PAPI 27/HMDA molar ratio	Average size distribution (nm)
1	1:0.4	107
2	1:0.7	105
3	1:0.9	107
4	1:1.1	108
5	1:1.25	126
6	1:1.5	125
7	1:1.73	111

Table S3. Average size distribution measurements of polyurea nanocapsules, Pd_{nano}@PU and Pd_{nano}/MNPs@PU.

Entry	Encapsulated element	Average size distribution (nm)
1	Polyurea nanocapsules	105.7
2	Pd _{nano} @PU	223.6
3	Pdnano/MNPs@PU nanoreactors.	220.5

Figure S3. Energy dispersive X-ray spectroscopy (EDX) measurements of MNPs@PU nanocapsules.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2014

Figure S4. Powder XRD pattern of MNPs@PU nanocapsules.

Figure S5. Particle size distribution of palladium nanoparticles in Pd_{nano} @PU nanocapsules.

Figure S6. Thermal gravimetric analysis (TGA) curve of Pdnano/MNPs@PU nanocapsules.