Supporting Information for

Preparation of porous (Ni,Co)₃(BO₃)₂/Ni(OH)₂ Nanosheet

networks as pseudocapacitor materials with Superior

Performance

Yuanzhen Chen^{1,2}, Yongning Liu^{1*}, Wei Yan^{2*}

¹ State Key Laboratory for Mechanical Behavior of Materials, School of

Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049,

PR China

² School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an

710049, PR China

Corresponding authors:

Yong ning Liu , ynliu@mail.xjtu.edu.cn

Wei Yan, yanwei@mail.xjtu.edu.cn

Sample	Morphology	Capacitance	Retention(%)	Ref.	Sample	Morphology	Capacitance	Retention(%)	Ref.
		(F∙g⁻¹)					(F∙g⁻¹)		
		1039	72.3					93.4	
				1			1144(5 mV⋅s⁻¹)	(5 mV·s⁻¹,	2
nanoroos	100_nm	(2.5 mA·cm ⁻⁺)	1000 cycles)		nanosneets	Zerr		500 cycles)	
Ni(OH) ₂ /CoO/	C Sal	1056	84 8 (50mV⋅s⁻		doughnut-like	(J)		84.7	
graphene		$(5 \text{ m})/(s^{-1})$	¹ 2000 cycles)	3	Ni(OH) ₂ -		2020 (5A·g⁻¹)	(5 A∙g⁻¹,	4
nanosheets	100 <u>nm</u>	(3 111 (5)	, 2000 Cycles)		Co(OH) ₂	500 nm		1000cycles)	
	Aller				Porous Nano-			05	
Ni–Co–O/ Co ₃ O ₄	and the second	2098	96	5	Ni/		0000/54 1	90	6
nanosheets	Contraction of the	(5 mA ⋅ cm - 1)	(30 mA·cm ⁻² ,	5	Co(OH) ₂		2028(5A·g-')	(2A·g⁻¹,	Ū
	2 <u>00 nm</u>		2000 Cycles)		Nanoflake			2000cycles)	
Ni ₃ S ₂ @Ni(OH) ₂ /			99.1					86	
Graphene	2136	1125 (5 mv·s ⁻¹),	(5.1A∙g⁻¹,	7	$UO_x NI_{1-x} (UH)_2$		1200(4 A·g ⁻¹)	(1 A∙g⁻¹,	8
nanorods	2 µm	1035 (5.1 A∙g⁻¹)	2000 cycles)		nanoribbons	X508 58mm		500cycles)	

Table S1. Ni and Co composited materials with large capacitance and good capacitance retention.

1. Composite materials with a nanosheets morphology usually have large CPs.

2. Composite materials with a nanosheets morphology usually have good capacitance retention(>80% after 1000 cycles).

Sample	Morphology	SSA(m²⋅g⁻¹)	Capacitance (F·g ⁻¹)	Ref	Sample	Morphology	SSA(m ² ·g ⁻¹)	Capacitance (F·g ⁻¹)	Ref
Co₃O₄ nanorods	Shon	90.6	163 (2 A·g⁻¹)	9	Ni(OH)₂-Co(OH)₂ nanosheets		35.7	2104 (1 A·g ⁻¹)	10
Co₃O₄ nanorods		45.1	127.5 (1 A·g⁻¹)	11	Ni–Co–O/ Co ₃ O ₄ nanosheets	<u>200 nm</u>	100	2098 (5 mA·cm ⁻²)	5
Mesopore Co₃O₄ big sheet		25.12	92 (5 mA·cm⁻²)	12	Porous NiO nanospindles		102.7	1462 (1 A·g⁻¹)	13
Co₃O₄ nanowires	δ μeni	74.9	996 (1 A·g⁻¹)	14	Co ₁₁ (HPO ₃) ₈ (OH) ₆ nanoribbons	16 нт	71.6	312 (1.25 A·g⁻¹)	15
Co₃O₄ nanowires	50 µm	75.94	912 (0.25 A⋅g⁻¹)	16	NiO nanobelts		95.5	1126 (2 A·g⁻¹)	17
Co₃O₄ /NiO nanowires	50 mm	99.6	760(1 A⋅g⁻¹)	18	Ni(OH) ₂ nanoplatelets	1µm	72.9	1750 (5 mV⋅s⁻¹)	19
Co₃O₄ nanosheets	100_nm	118	2735(2 A⋅g⁻¹)	20	Co ₃ O ₄ /Ni(OH) ₂ nanosheets	Zimi	80.3	1144(5 mV⋅s⁻¹)	2

Table S2. comparison on specific surface area and capacitance for Co₃O₄ and other Ni/Co composites with different morphologies

 Co_3O_4 materials with different morphologies (nanorods, nanowires and nanosheets) had large gap in their specific capacitances (CPs), indicating that the morphology has a great influence on the redox process. Nanorods obtained low CPs, nanowires had high CPs, and nanosheets got higher CPs.

Figure S1. (a) Composite materials with a nanosheets morphology usually have large CPs and good capacitance retention (80% after 1000 cycles), driving from Table 2;(b) materials with different morphologies display large gap in specific capacitance, driving from Table 1.

The pure $Co_3(BO_3)_2$ and $Ni_3(BO_3)_2$ were prepared by the method mentioned by Gao et al,²¹ and their SEM images, XRD patterns and CV curves are shown in **figure S2**. As seen from **figure S2 (a, b)**, $Ni_3(BO_3)_2$ and $Co_3(BO_3)_2$ show rodlike morphology which is different to the ultrathin nanosheets of $(Ni,Co)_3(BO_3)_2/Ni(OH)_2$ composite. XRD patterns (**figure S2. c**) determine that they are pure $Ni_3(BO_3)_2$ and $Co_3(BO_3)_2$. It is clearly seen that the pure $Co_3(BO_3)_2$ and $Ni_3(BO_3)_2$ have different redox peaks (**figure S2. d**). As seen from reduction peaks, $Co_3(BO_3)_2$ had four peaks and $Ni_3(BO_3)_2$ had two peaks respectively. Also compared with CV curve of Ni foam, it was clearly seen that the same peak located at 0.3 V should be the reduction peak of NiOOH⁴. Therefore, P1', P2' and P3' belonged to $Co_3(BO_3)_2$; P4' belonged to $Ni_3(BO_3)_2$.

Figure S2. SEM images of (a) $Ni_3(BO_3)_2$ and (b) $Co_3(BO_3)_2$ prepared at 850 °C by the method mentioned by Gao et al.²¹ (c) XRD patterns of $Ni_3(BO_3)_2$ and $Co_3(BO_3)_2$, (d) CV curves of $Ni_3(BO_3)_2$ and $Co_3(BO_3)_2$ measured at a scanning rate of 5 mVs⁻¹.

$$\frac{1}{2} \operatorname{Co}_{3}(\operatorname{BO}_{3})_{2} + \operatorname{OH}^{-} \leftrightarrow \frac{1}{2} \operatorname{CoBO}_{3} + \operatorname{Co}(\operatorname{OH})_{2} + e^{-} \quad (\operatorname{P1} \leftrightarrow \operatorname{P1}')$$

$$\operatorname{Co}(\operatorname{OH})_{2} + \operatorname{OH}^{-} \leftrightarrow \operatorname{CoOOH} + \operatorname{H}_{2}\operatorname{O} + e^{-} \quad (\operatorname{P2} \leftrightarrow \operatorname{P2}')$$

$$\operatorname{CoOOH} + \operatorname{OH}^{-} \leftrightarrow \operatorname{CoO}_{2} + \operatorname{H}_{2}\operatorname{O} + e^{-} (\operatorname{P3} \leftrightarrow \operatorname{P3}')$$

$$\frac{1}{2} \operatorname{Ni}_{3}(\operatorname{BO}_{3})_{2} + \operatorname{OH}^{-} \leftrightarrow \operatorname{NiBO}_{3} + \frac{1}{2} \operatorname{Ni}(\operatorname{OH})_{2} + e^{-} (\operatorname{P4} \leftrightarrow \operatorname{P4}')$$

Specially, for $Co_3(BO_3)_2$ sample, the oxidation peak corresponding to P3' overlaps the oxidation peak of Ni foam, because the reduction peaks at 0.4V (P3') and 0.3V separate from each other. For Ni₃(BO₃)₂ sample, it has two reduction peaks at 0.375V (P4') and 0.3V(green circle). Correspondingly, there are two oxidation peaks 0.43 V (green circle) and 0.45 V (P4). The redox peaks marked by green circle should belong to Ni foam. The redox peaks (P4-P4') belong to Ni₃(BO₃)₂. Even though the electrochemical oxidation products of Ni₃(BO₃)₂ include Ni(OH)₂, the oxidation potential of

 $Ni_3(BO_3)_2$ is higher than that of $Ni(OH)_2$, therefore, when potential exceeds 0.45 V (P4), no one oxidation peak of $Ni(OH)_2$ appears.

However, the CV curve of $(Ni,Co)_3(BO_3)_2/Ni(OH)_2$ composite as positive electrode material (**figure 4.c in text**) only shows one pair of broad peaks, and one weak reduction peak (arrow in figure 4.c) which should belong to $Ni(OH)_2$. The electrochemical reaction of $Ni(OH)_2$ is:

 $Ni(OH)_2 + OH^2 = NiOOH + H_2O + e^2$

Other clear peaks appeared in **figure S2.d** maybe overlap each other and then display in broad oxidation and reduction peaks.

Figure S3. The CV curve of $(Ni,Co)_3(BO_3)_2/Ni(OH)_2$ composite as negative electrode at a scanning rate of 5 mVs⁻¹.

References

- M.-C. Liu, L.-B. Kong, C. Lu, X.-J. Ma, X.-M. Li, Y.-C. Luo and L. Kang, *J. Mater. Chem. A*, 2013, **1**, 1380.
- J.-H. Zhong, A.-L. Wang, G.-R. Li, J.-W. Wang, Y.-N. Ou and Y.-X. Tong, J. Mater. Chem., 2012, 22, 5656.
- 3 L. Jiang, R. Zou, W. Li, J. Sun, X. Hu, Y. Xue, G. He and J. Hu, *J. Mater. Chem. A*, 2013, **1**, 478.

- 4 J. Li, M. Yang, J. Wei and Z. Zhou, *Nanoscale*, 2012, **4**, 4498.
- 5 Z. Lu, Q. Yang, W. Zhu, Z. Chang, J. Liu, X. Sun, D. Evans and X. Duan, *Nano Res.*, 2012, **5**, 369.
- K. H. Xia, J. P. Tu, Y. Q. Zhang, Y. J. Mai, X. L. Wang, C. D. Gu and X. B. Zhao, J. Phys. Chem. C, 2011, 115, 22662.
- 7 W. Zhou, X. Cao, Z. Zeng, W. Shi, Y. Zhu, Q. Yan, H. Liu, J. Wang and H. Zhang, Energy Environ. Sci., 2013, 6, 2216.
- 8 X. Liu, J. Huang, X. Wei, C. Yuan, T. Liu, D. Cao, J. Yin and G. Wang, *J. Power Sources*, 2013, **240**, 338.
- 9 Y. Wang, Z. Zhong, Y. Chen, C. Ng and J. Lin, Nano Res., 2011, 4, 695.
- 10 V. Gupta, S. Gupta and N. Miura, J. Power Sources, 2008, 175, 680.
- 11 D. Wang, Q. Wang and T. Wang, *Inorg. Chem.*, 2011, **50**, 6482.
- 12 S. Xiong, C. Yuan, X. Zhang, B. Xi and Y. Qian, *Chem.-Eur. J.* 2009, **15**, 5320.
- 13 H. Pang, B. Zhang, J. Du, J. Chen, J. Zhang and S. Li, *RSC Adv.*, 2012, **2**, 2257.
- 14 F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che and X. Zhang, J. Power Sources, 2012,
 203, 250.
- 15 H. Pang, Y. Liu, J. Li, Y. Ma, G. Li, Y. Ai, J. Chen, J. Zhang and H. Zheng, *Nanoscale*, 2013, 5, 503.
- 16 R. B. Rakhi, W. Chen, D. Cha and H. N. Alshareef, *Nano Lett.*, 2012, **12**, 2559.
- 17 B. Wang, J. S. Chen, Z. Wang, S. Madhavi and X. W. Lou, *Adv. Energy Mater.*, 2012, 2, 1188.
- 18 H. Wang, Q. Gao and L. Jiang, *Small*, 2011, **7**, 2454.

- 19 H. Jiang, T. Zhao, C. Li and J. Ma, J. Mater. Chem., 2011, **21**, 3818.
- 20 C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang and X. W. Lou, *Energy Environ. Sci.*, 2012, **5**, 7883.
- 21 H. Pang, Q. Lu, C. Chen, X. Liu and F. Gao, J. Mater. Chem., 2011, **21**, 13889.