Electronic Supplementary Information

Monocrystalline VO₂ (B) nanobelts: large-scale synthesis, intrinsic peroxidase-like activity and application in biosensing

Guangdi Nie,^a Liang Zhang,^b Junyu Lei,^a Liu Yang,^a Zhen Zhang,^a Xiaofeng Lu*^a and Ce Wang*^a

^a Alan G. MacDiarmid Institute, Jilin University, Changchun, 130012, P. R. China. Fax-Tel: +86-431-85168292; E-mail: <u>xflu@jlu.edu.cn</u>; <u>cwang@jlu.edu.cn</u>

^b Department of Polymer Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.

Experimental

Materials

Hydrogen peroxide (H₂O₂, 30%, Beijing Chemical Works) and Glucose oxidase (GOx, 100-250 U·mg⁻¹, BR, Shanghai Kayon Biological Technology Co. Ltd) were stored in a refrigerator at -20°C. Other chemical reagents including vanadyl acetylacetonate (VO(acac)₂, 95%), concentrated hydrochloric acid (HCl, AR), 3,3',5,5'-tetramethylbenzidine (TMB, BR), sodium hydroxide (NaOH, AR), acetic acid (HAc, AR), dopamine hydrochloride (DA, 98%), L-ascorbic acid (AA, AR), citric acid (CA, 99+%) and so forth were used as received without any further purification. Ultrapure water was utilized for the preparation of all aqueous solutions.

Synthesis of catalysts

 VO_2 (B) nanobelts were fabricated as follows: a certain amount of $VO(acac)_2$ (2.5mmol) was dissolved in 30 mL of distilled water containing 0.08 M HCl under magnetic stirring to form a clear and transparent solution, which was then transferred into a 40 mL Teflon-lined autoclave. The reaction proceeded in an electric oven at 160°C for 24 h. After cooling down, the final blue-black product was collected by centrifugation, washed thoroughly with distilled water and ethanol, and ultimately dried at 40°C for characterization and further use.

Apparatus

The morphology of the sample was observed by a cold field-emission scanning electron microscopy (FESEM, Hitachi SU8020) and a transmission electron microscopy (TEM, JEOL JEM-1200 EX) operated at 3.0 and 100 kV, respectively. High-resolution TEM (HRTEM) images, selected area electron diffraction (SAED) patterns and energy dispersive X-ray (EDX) analysis were conducted on a FEI Tecnai G2 F20) electron microscope at an acceleration voltage of 200 kV. X-Ray diffraction (XRD, PAN-alytical B.V. Empyrean) with CuK α radiation was employed to investigate the crystallographic structure of the as-prepared product. Fourier-transform infrared (FTIR) spectra of KBr powder-pressed pellets were recorded on a Bruker Vector 22 Spectrometer. The chemical composition of the resulting VO₂ (B) nanobelts was characterized by X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB250). The peroxidase-like catalytic activity was measured by ultra-violet-visible (UV-vis) spectra performed on Shimadzu UV-2501 PC spectrometer.

Colorimetric assay

In a typical colorimetric experiment, unless otherwise stated, 10 μ L of catalyst aqueous dispersion (3 mg·mL⁻¹) was added to 3 mL of acetate buffer solution (0.1 M, pH = 5.0) consisting of 100 μ M TMB and 5 mM H₂O₂. Afterwards the sample in cuvette was positioned immediately in the cell holder of UV-Vis spectrophotometer for the steady-state kinetic measurements which were implemented in time course mode by monitoring the absorbance changes at 650 nm. The apparent kinetic parameters in the Michaelis-Menten equation were calculated on the basis of Lineweaver-Burk plot: $1/\nu = K_m/V_{max} \cdot (1/[S] + 1/K_m)$, where ν , K_m , V_{max} and [S] represent, respectively, the initial velocity, the Michaelis constant, the maximal reaction velocity and the substrate concentration. DA, AA and CA with the same content of 5 mM were used instead of H₂O₂ for comparison purpose to verify the selectivity of VO₂ (B) nanobelts.

As for the determination of glucose, there is really no essential difference from the mentioned conditions except for that 10 μ L of 10 mg·mL⁻¹ GOx and 100 μ L of glucose with different concentrations in 500 μ L of phosphate buffer solution (10 mM, pH = 7.0) should be incubated at 37 °C for 30 min before approximately 3 mL of mixed specimen was prepared, and that absorption spectra were tracked at the time of 120 s to survey the oxidation reaction of the substrate TMB.

Fig. S1 SEM image of the belt-like VO₂ (B) nanostructures.

Fig. S2 Width distribution of VO₂ (B) nanobelts counted from the TEM image.

Fig. S3 FTIR spectra of (a) VO(acac)₂ raw materials and (b) VO₂ (B) nanobelts.

As depicted in Fig. S3a, the FTIR spectrum of VO(acac)₂, which is in perfect agreement with the reference,¹ the weak and overlapping bands in the region of 2900~3000 cm⁻¹ are aroused by the symmetric and antisymmetric vibrations of CH₃. The stretching vibrations of -CO-CH-CO- are observed at 2467 and 2299 cm⁻¹. The peaks positioned at 1560, 1530 and 1375 are ascribed to C=O vibration modes. The stretching vibrations of C-O and C=C appear separately at 1420 and 1286 cm⁻¹. Moreover, the characteristic peaks at 997 and 486 cm⁻¹ indicate the existence of V=O and V-O bonds. With regard to the as-prepared VO₂ (B) nanobelts, by contrast, no peaks belong to VO(acac)₂ are discovered in Fig. S3b, suggesting the complete hydrolysis of the precursor. In the light of the earlier report,² the bands at 553, 937 and 1005 cm⁻¹ can be identified to be intrinsic for VO₂ (B), which are attributed to the V-O-V octahedral bending deformation modes, the coupled vibration of V=O and V-O-V as well as the stretching of short V=O, respectively.

Fig. S4 XPS spectra of VO₂ (B) nanobelts: (A) full survey spectrum, (B) V 2p and O 1s regions.

In order to study the surface electronic state and chemical composition of the final products, their XPS spectra were given in Fig. S4. The wide-scan XPS spectrum (Fig. S4A) distinctly reveals the presence of V, C and O elements, among which the signal of C should primarily be imputed to the absorbed carbon dioxide. To deeply evaluate the binding property of the elements in VO₂ (B), high-resolution XPS spectrum (Fig. S4B) can be fitted with three main peaks centered at 516.3, 517.6 and 524.3 eV for V 2p region, which are associated severally with V $2p_{3/2}$, VO₂ and V $2p_{1/2}$,^{3,4} expounding that V (IV) as the exclusive valence state exists in the final nanobelts, and another predominant peak accompanied by carbonyl (C=O) line for O 1s region.

Fig. S5 Steady-state kinetic assay of VO₂ (B) nanobelts. The catalyst concentration was fixed at 10 μ g·mL⁻¹ in 3 mL of acetate buffer solution (0.1 M, pH = 5.0). (A) TMB concentration was kept constant at 100 μ M and the H₂O₂ concentration was varied. (B) H₂O₂ concentration was maintained at 5 mM and the TMB concentration was varied. Double reciprocal plots of VO₂ (B) catalytic activity for the two substrates (C) H₂O₂ and (D) TMB. Details were described in the Experimental section.

А	Catalyst	$K_m [mM]$	$V_{max} [10^{-8} M \cdot s^{-1}]$
Substrate H ₂ O ₂	HRP ⁵	3.7	8.71
	Fe ₃ O ₄ MNPs ⁵	154	9.78
	ZnFe ₂ O ₄ MNPs ⁶	1.66	7.74
	Co ₃ O ₄ GNs ⁷	245	28.5
	PB/γ-Fe ₂ O ₃ MNPs ⁸	323.6	117
	$VO_2(B)$	1.69	177
В	Catalyst	$K_m [mM]$	$V_{max} [10^{-8} M \cdot s^{-1}]$
Substrate TMB	HRP ⁵	0.434	10.0
	Fe ₃ O ₄ MNPs ⁵	0.098	3.44
	ZnFe ₂ O ₄ MNPs ⁶	0.85	13.31
	= :		
Substrate TMB	Co ₃ O ₄ GNs ⁷	0.12	33.2
Substrate TMD	$Co_3O_4 \text{ GNs}^7$ PB/ γ -Fe $_2O_3 \text{ MNPs}^8$	0.12 0.307	33.2 106

Table S1 Comparison of the kinetic parameters between different nanomaterials and horseradish peroxidase (HRP) with (A) H_2O_2 and (B) TMB as the substrates.

Table S2 Reproducibility between two batches of VO_2 (B) nanobelts prepared at different times using the same method.

Batch No.	1	2	RSD (%)
Catalytic activity (%)	100 ± 5.5^{a}	94.5±5.0 ^a	5.9

^a RSD for nine repeated measurements.

Fig. S6 Long-term stability of VO₂ (B) stock solution with three duplicate determinations. Inset:

the corresponding pictures of colored products.

References

1 L. J. Mao, C. Y. Liu and J. Li, J. Mater. Chem., 2008, 18, 1640-1643.

2 S. R. Popuri, M. Miclau, A. Artemenko, C. Labrugere, A. Villesuzanne and M. Pollet, Inorg. Chem., 2013, **52**, 4780-4785.

3 Y. Xu, L. Zheng and Y. Xie, Dalton Trans., 2010, 39, 10729-10738.

4 X. Y. Chen, X. Wang, Z. H. Wang, J. X. Wan, J. W. Liu and Y. T. Qian, Nanotechnology, 2004, 15, 1685-1687.

5 L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. Feng, D. L. Yang, S. Perrett and X. Y. Yan, Nat. Nanotechnol., 2007, **2**, 577-583.

6 L. Su, J. Feng, X. M. Zhou, C. L. Ren, H. H. Li and X. G. Chen, Anal. Chem., 2012, 84, 5753-5758.

7 J. F. Yin, H. Q. Cao and Y. X. Lu, J. Mater. Chem., 2012, 22, 527-534.

8 X. Q. Zhang, S. W. Gong, Y. Zhang, T. Yang, C. Y. Wang and N. Gu, J. Mater. Chem., 2010, **20**, 5110-5116.

9 W. W. He, Y. Liu, J. S. Yuan, J. J. Yin, X. C. Wu, X. N. Hu, K. Zhang, J. B. Liu, C. Y. Chen, Y. L. Ji and Y. T. Guo, Biomaterials, 2011, **32**, 1139-1147.