High Voltage Sulphate Cathodes $\text{Li}_2 M(\text{SO}_4)_2$ (M = Fe, Mn, Co): Atomic-Scale Studies of Lithium Diffusion, Surfaces and Voltage Trends

Supplementary Information

Table S1. Interatomic potentials and shell model parameters for	For $\operatorname{Li}_2 M(\operatorname{SO}_4)_2$ ($M = \operatorname{Fe}$, Mn, Co).
---	---

(a) Buckingham						
Interaction	<i>A</i> (eV)	ρ (Å)	$C (eV \cdot Å^6)$			
Li ⁺ - O ^{0.84-}	4787.6	0.19998	0.0			
Fe^{2+} - $O^{0.84-}$	7500.0	0.22	0.0			
Mn^{2+} - $O^{0.84-}$	1210.85	0.2825	0.0			
${ m Co}^{2+}$ - ${ m O}^{0.84-}$	1163.5	0.27	0.0			
O ^{0.84-} - O ^{0.84-}	103585.030	0.20	25.93			
	(b)	Morse				
	$D_e (\mathrm{eV})$	a (Å-1)	r_0 (Å)			
O ^{0.84-} - S ^{1.36+}	5.0	1.20	1.505			
(c) Three-body						
	K (eV·rad-2)	$ heta_0$ (deg)				
O ^{0.84-} - S ^{1.36+} - O ^{0.84-}	15.0	109.47				
(d) Shell model						
Species	<i>Y</i> (e)	k (eV·Å-2)				
Fe ²⁺	2.997	19.26				
Mn^{2+}	3.42	95.00				
Co ²⁺	3.503	110.50				

Li ₂ Co(SO ₄) ₂ ²¹	$P 2_1/c$	<i>a</i> = 4.9787(1) Å	b = 8.1113(1) Å	c = 8.7831(1) Å	$\beta = 121.811(1)^{\circ}$	$V = 301.416(1) \text{ Å}^3$
Atom	Wyckoff	Occupancy	x/a	y/b	z/c	B _{iso} (Å ²)
Со	2 <i>a</i>	1.0	0	0	0	0.65(1)
Li	4 <i>e</i>	1.0	0.002(1)	0.638(1)	0.103(1)	1.16(11)
S	4 <i>e</i>	1.0	0.3361(2)	0.3046(1)	0.3024(1)	0.68(2)
O1	4 <i>e</i>	1.0	0.1829(4)	0.4185(3)	0.1530(3)	0.70(4)
O2	4 <i>e</i>	1.0	0.2048(5)	0.1365(2)	0.2466(3)	0.85(4)
O3	4 <i>e</i>	1.0	0.2834(4)	0.3506(2)	0.4501(3)	0.73(4)
O4	4 <i>e</i>	1.0	0.6794(4)	0.3022(2)	0.3748(3)	0.46(4)
Li ₂ Mn(SO ₄) ₂ ²²	$P 2_1/c$	<i>a</i> = 4.9920(1) Å	<i>b</i> = 8.3396(1) Å	c = 8.8614(1) Å	$\beta = 121.230(5)^{\circ}$	$V = 315.464(5) \text{ Å}^3$
Atom	Wyckoff	Occupancy	x/a	y/b	z/c	B _{iso} (Å ²)
Mn	2 <i>a</i>	1.0	0	0	0	1.32(4)
Li	4 <i>e</i>	1.0	0.021(3)	0.6326(14)	0.1010(16)	1.9(4)
S	4 <i>e</i>	1.0	0.3284(5)	0.3030(3)	0.2970(3)	1.77(5)
O1	4 <i>e</i>	1.0	0.1761(9)	0.4140(4)	0.1490(5)	0.84(10)
02	4 <i>e</i>	1.0	0.1954(9)	0.1405(5)	0.2460(5)	1.29(11)
O3	4 <i>e</i>	1.0	0.2813(8)	0.3508(4)	0.4379(5)	1.80(12)
O4	4 <i>e</i>	1.0	0.6619(8)	0.2974(5)	0.3607(5)	0.61(10)
Li ₂ Fe(SO ₄) ₂ ²¹	$P 2_1/c$	a = 4.9886(1) Å	b = 8.2062(1) Å	c = 8.8293(1) Å	$\beta = 121.7499(1)^{\circ}$	$V = 307.359(1) \text{ Å}^3$
Atom	Wyckoff	Occupancy	x/a	y/b	z/c	B _{iso} (Å ²)
Fe	2 <i>a</i>	1.0	0	0	0	0.49(1)
Li	4 <i>e</i>	1.0	0.0176(12)	0.6307(7)	0.1060(7)	1.30(12)
S	4 <i>e</i>	1.0	0.3340(2)	0.3040(1)	0.3015(1)	0.49(2)
O1	4 <i>e</i>	1.0	0.1779(4)	0.4183(2)	0.1501(2)	0.48(4)
O2	4 <i>e</i>	1.0	0.2007(4)	0.1376(2)	0.2482(2)	0.37(4)
O3	4 <i>e</i>	1.0	0.2879(4)	0.3517(2)	0.4470(2)	0.63(5)
O4	4 <i>e</i>	1.0	0.6762(4)	0.3003(2)	0.3703(2)	0.42(4)
LiFe(SO ₄) ₂ ²²	$P 2_1/c$	a = 4.7966(1) Å	b = 8.3638(1) Å	c = 7.9056(1) Å	$\beta = 121.475(5)^{\circ}$	$V = 270.465(3) \text{ Å}^3$
Atom	Wyckoff	Occupancy	x/a	y/b	z/c	B _{iso} (Å ²)
Fe	2 <i>a</i>	1.0	0	0	0	0.49(2)
Li	4 <i>e</i>	0.5	0.560(3)	0.0236(14)	0.5258(18)	1.1(3)
S	4 <i>e</i>	1.0	0.3048(3)	0.1783(1)	0.7613(2)	0.27(2)
O1	4e	1.0	0.0455(4)	0.1275(2)	0.7997(3)	0.69(4)
02	4e	1.0	0.2632(4)	0.1033(2)	0.5854(3)	0.66(4)
O3	4e	1.0	0.2824(4)	0.3572(2)	0.7377(3)	0.57(4)
O4	4 <i>e</i>	1.0	0.3757(4)	0.6422(2)	0.5594(2)	0.55(4)

Table S2. Crystallographic data and atomic positions of $\text{Li}_2 M(\text{SO}_4)_2$ (M = Co, Mn, Fe) and $\text{LiFe}(\text{SO}_4)_2$

Experimental

 $Li_2M(SO_4)_2$ (M = Co, Mn, Fe) samples were prepared using the procedure described in previous reports^{21,22}, which consists of the following steps: (i) ball-milling of the precursors MSO_4 and Li_2SO_4 taken in a stoichiometric ratio, (ii) pressing the resulting mixture into a pellet, (iii) annealing of the pellet at 310°C for 12 to 48 hours working either under air (M = Co, Mn) or in a quartz tube sealed under vacuum (M = Fe). The delithiated samples LiFe(SO₄)₂ were obtained

from chemical oxidation of the $Li_2Fe(SO_4)_2$ phase using NO_2BF_4 in acetonitrile as an oxidizing agent.

The Li₂*M*(SO₄)₂ structure was precisely determined from Synchrotron X-ray diffraction patterns of Li₂Co(SO₄)₂ and Li₂Fe(SO₄)₂ (11-BM beamline, APS-ANL, Argonne USA).²¹ This model was later used to refine the laboratory XRD pattern of Li₂Mn(SO₄)₂ (Bruker D8 diffractometer, using a Cu radiation source: $\lambda_{K\alpha 1} = 1.54056$ Å, $\lambda_{K\alpha 2} = 1.54439$ Å).²² Neutron powder diffraction was used to determine the structure of LiFe(SO₄)₂, in particular to accurately localize the light Li atoms; a joint refinement was finally performed against both Synchrotron XRD and neutron diffraction data.²²

		Li-Li Separation (Å)	
Path	$Li_2Fe(SO_4)_2$	$Li_2Mn(SO_4)_2$	$Li_2Co(SO_4)_2$
L1	2.79	2.89	2.87
L2	4.82	4.82	4.75
L3	4.88	4.95	4.81
L4	4.96	5.10	4.87
L5	4.99	4.99	4.96

Table S3. Li-Li separations for Li Migration Paths (illustrated in Fig. 3) in $\text{Li}_2 M(\text{SO}_4)_2$ (M = Fe, Mn, Co).

Table S4. Calculated (DFT) and Experimental Structural Parameters of $L_{12}M(SO_4)_2$ (M = Fe, Mn, Co).

Parameter	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β(°)
		$Li_2Fe(SO_4)_2$		
calc. (GGA+U)	5.0453	8.2894	8.9848	121.80
expt. ²¹	4.9886	8.2062	8.8293	121.75
Δ	0.0567	0.0832	0.1555	0.05
		$Li_2Mn(SO_4)_2$		
calc. (GGA+U)	5.0537	8.4295	9.0098	120.95
expt. ²²	4.9920	8.3396	8.8614	121.23
Δ	0.0617	0.0899	0.1484	-0.28
		$Li_2Co(SO_4)_2$		
calc. (GGA+U)	5.0248	8.1970	8.9149	121.30
expt. ²¹	4.9787	8.1113	8.7831	121.81
Δ	0.0461	0.0857	0.1318	-0.51
		LiFe(SO ₄) ₂		
calc. (GGA+U)	4.8913	8.4477	8.0559	121.30
expt. ²²	4.7966	8.3638	7.9056	121.48
Δ	0.0947	0.0839	0.1503	-0.18

Li ₂ Fe(SO ₄) ₂	<i>P</i> 1	<i>a</i> = 5.0453 Å	b = 8.2894 Å $c = 8.9848$ Å	$\beta = 121.80^{\circ}$
Atom		<i>x</i> / <i>a</i>	y/b	z/c
Li1		0.0110	0.6347	0.1009
Li2		0.9890	0.3653	0.8991
Li3		0.9890	0.1347	0.3991
Li4		0.0110	0.8653	0.6009
Fe1		0.0000	0.0000	0.0000
Fe2		0.0000	0.5000	0.5000
S1		0.3322	0.3058	0.3013
S2		0.6678	0.6942	0.6987
\$3		0.6678	0.8058	0.1987
S4		0.3322	0.1942	0.8013
01		0.1771	0.4182	0.1519
02		0.8229	0.5818	0.8481
O3		0.8229	0.9182	0.3481
O4		0.1771	0.0818	0.6519
O5		0.2040	0.1391	0.2476
O6		0.7960	0.8609	0.7524
O7		0.7960	0.6391	0.2524
08		0.2040	0.3609	0.7476
O9		0.2810	0.3526	0.4444
O10		0.7190	0.6474	0.5556
011		0.7190	0.8526	0.0556
O12		0.2810	0.1474	0.9444
O13		0.6765	0.3057	0.3727
O14		0.3235	0.6943	0.6273
O15		0.3235	0.8057	0.1273
016		0.6765	0.1943	0.8727

 $\label{eq:solution} \textbf{Table S5.} Calculated (DFT) Crystallographic data and atomic positions of Li_2Fe(SO_4)_2 and LiFe(SO_4)_2.$

LiFe(SO ₄) ₂	<i>P</i> 1 <i>a</i> = 4.8913 Å	b = 8.4477 Å $c = 8.0559 Å$	$\beta = 121.30^{\circ}$
Atom	x/a	y/b	z/c
Lil	0.5000	0.0000	0.0000
Li2	0.5000	0.5000	0.5000
Fe1	0.0000	0.0000	0.5000
Fe2	0.0000	0.5000	0.0000
S1	0.3066	0.1783	0.2637
S2	0.6934	0.8217	0.7363
S3	0.6934	0.6783	0.2363
S4	0.3066	0.3217	0.7637
01	0.0560	0.1264	0.3062
O2	0.9440	0.8736	0.6938
O3	0.9440	0.6264	0.1938
O4	0.0560	0.3736	0.8062
O5	0.2604	0.1043	0.0894
O6	0.7396	0.8957	0.9106
O7	0.7396	0.6043	0.4106
08	0.2604	0.3957	0.5894
O9	0.2841	0.3560	0.2396
O10	0.7160	0.6440	0.7604
011	0.7160	0.8560	0.2604
O12	0.2840	0.1440	0.7400
O13	0.3716	0.6430	0.0606
O14	0.6284	0.3570	0.9394
O15	0.6284	0.1430	0.4394
O16	0.3716	0.8570	0.5606