Supporting Information for

Electrospun Fe₂O₃-carbon Composite Nanofibers as Durable Anode

Materials for Lithium Ion Batteries

Xiang Zhang, 1,2 Huihui Liu, $^3~$ Shaikshavali Petnikota, 4 Seeram Ramakrishna, 2 Hong Jin Fan $^{1,\,*}$

¹Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

² Center of Nanofibers & Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 117576

³Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260

⁴School of Engineering Sciences and Technology (SEST), University of Hyderabad, Gachibowli, Hyderabad 500046, Andhra Pradesh, India

Fig S1 Riveted refined X-ray diffraction pattern

Fig S2 FESEM image of Fe₂O₃-C composite nanofiber mat after calcination at 550° C (a) and 600° C (b) in Ar; Close-up FESEM image of a bundle of Fe₂O₃-C composite nanofibers after calcination at 550° C (c) and 600° C (d) in Ar

Table S1 Impedance parameters of Fe_2O_3 -C composite nanofibers and bare Fe_2O_3 nanofibers electrodes

Sample	R _e	R _{sf}	R _{ct}
Fe ₂ O ₃ -C composite nanofibers	2.1 Ω	67 Ω	159 Ω
bare Fe ₂ O ₃ nanofibers	4.7 Ω	112 Ω	192 Ω

Fig S4 TEM image of electrospun Fe₂O₃ nanofibers.

Fig S5 $N_{\rm 2}$ adsorption and desorption isotherm of Fe_2O_3-C composite nanofibers.

Materials	Initial	Current	Reversible	Capacity	Ref.
	Capacity	Rate (C)	Capacity	Retention	
	$(mAh g^{-1})$		(mAh	against the	
			g ⁻¹ /cycles)	2 nd cycle	
				(%)	
Carbon/Fe ₂ O ₃ nanorod array	1115	0.5C	595 (50)	73	[1]
Fe ₂ O ₃ /Carbon composite	1227	0.2C	688 (50)	84	[2]
Fe ₂ O ₃ hollow spheres	1820	0.2C	710 (100)	80	[3]
Fe ₂ O ₃ nanoflakes	1235	0.065C	680 (80)	83	[4]
Fe ₂ O ₃ microflowers	1820	0.1C	929 (10)	74	[5]
Mesoporous Fe ₂ O ₃ nanostructures	1730	0.2C	1293 (50)	95	[6]
Hierarchical hollow Fe ₂ O ₃ spheres	1255	0.5C	815 (200)	88	[7]
Fe ₂ O ₃ nanoparticles in CNTs	1950	0.035C	811 (100)	83	[8]
Fe ₂ O ₃ Nanospheres	1398	0.1C	414 (60)	52	[9]
Fe ₂ O ₃ nanoparticles filled in CNTs	2081	0.035C	768 (40)	82	[10]
Carbon coated γ -Fe ₂ O ₃	1580	0.1C	635 (40)	72	[11]
microparticles					
Reduced graphene oxide/ Fe ₂ O ₃	1693	0.1C	821 (50)	80	[12]
Fe ₂ O ₃ nanorod on carbon fibers	1278	0.2C	758 (50)	81	[13]
Fe ₂ O ₃ /graphene composite	1500	0.2C	800 (100)	68	$[^{14}]$
Fe ₂ O ₃ rice on graphene nanosheet	825	1C	582 (100)	73	[¹⁵]
Hollow structure Fe ₂ O ₃ /carbon	1400	2C	722 (220)	82.9	[¹⁶]
Carbon-encapsulated Fe ₃ O ₄ NPs	1021	1C	998 (100)	97.7	[¹⁷]
Fe ₂ O ₃ -SWCNTs	831	0.5C	801 (90)	96	[¹⁸]
Fe ₃ O ₄ -carbon-rGO three	1426	0.2C	843 (100)	88.5	[¹⁹]
dimensional composite					
TiO_2 @ Fe_2O_3	840	0.2C	530 (200)	85	$[^{20}]$
TiO ₂ @ Fe ₂ O ₃ core-shell arrays	500	0.12C	497 (150)	99.4	$[^{21}]$
Fe ₂ O ₃ -carbon composite nanofibers	1214	0.2C	820 (100)	96	This Study

Table S2. The comparisons of electrochemical performance of Fe_2O_3 and Fe_3O_4 with carbon, carbon nanotubes and graphene.

References

- 1. Y. Song, S. Qin, Y. Zhang, W. Gao and J. Liu, *The Journal of Physical Chemistry C*, 2010, **114**, 21158-21164.
- 2. F. Cheng, K. Huang, S. Liu, J. Liu and R. Deng, *Electrochimica Acta*, 2011, **56**, 5593-5598.
- B. Wang, J. S. Chen, H. B. Wu, Z. Wang and X. W. Lou, J. Am. Chem. Soc., 2011, 133, 17146-17148.
- 4. M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. Subba Rao and B. V. R. Chowdari, Advanced Functional Materials, 2007, **17**, 2792-2799.
- 5. Y. Han, Y. Wang, L. Li, Y. Wang, L. Jiao, H. Yuan and S. Liu, *Electrochimica Acta*, 2011, **56**, 3175-3181.

- 6. B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn and G. Wang, *The Journal of Physical Chemistry C*, 2010, **114**, 18753-18761.
- 7. J. Zhu, Z. Yin, D. Yang, T. Sun, H. Yu, H. E. Hoster, H. H. Hng, H. Zhang and Q. Yan, *Energy & Environmental Science*, 2013, **6**, 987-993.
- 8. W.-J. Yu, P.-X. Hou, F. Li and C. Liu, *Journal of Materials Chemistry*, 2012, **22**, 13756-13763.
- 9. M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, *Nano Letters*, 2008, **8**, 3498-3502.
- W.-J. Yu, P.-X. Hou, L.-L. Zhang, F. Li, C. Liu and H.-M. Cheng, *Chemical Communications*, 2010, 46, 8576-8578.
- 11. Y. Ma, G. Ji and J. Y. Lee, *Journal of Materials Chemistry*, 2011, **21**, 13009-13014.
- 12. X. Zhu, Y. Zhu, S. Murali, M. D. Stoller and R. S. Ruoff, ACS Nano, 2011, 5, 3333-3338.
- 13. Z. Liu and S. W. Tay, *Materials Letters*, 2012, **72**, 74-77.
- X. H. Lu, T. Zhai, X. H. Zhang, Y. Q. Shen, L. Y. Yuan, B. Hu, L. Gong, J. Chen, Y. H. Gao, J. Zhou, Y. X. Tong and Z. L. Wang, *Adv. Mater.*, 2012, **24**, 938-+.
- 15. Y. Zou, J. Kan and Y. Wang, *The Journal of Physical Chemistry C*, 2011, **115**, 20747-20753.
- 16. S.-L. Chou, J.-Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H.-K. Liu and S.-X. Dou, *Journal of Materials Chemistry*, 2010, **20**, 2092-2098.
- 17. C. He, S. Wu, N. Zhao, C. Shi, E. Liu and J. Li, ACS Nano, 2013, 7, 4459-4469.
- 18. G. Zhou, D.-W. Wang, P.-X. Hou, W. Li, N. Li, C. Liu, F. Li and H.-M. Cheng, *Journal of Materials Chemistry*, 2012, **22**, 17942-17946.
- 19. C. X. Guo, M. Wang, T. Chen, X. W. Lou and C. M. Li, *Adv. Energy Mater.*, 2011, **1**, 736-741.
- 20. J. Luo, X. Xia, Y. Luo, C. Guan, J. Liu, X. Qi, C. F. Ng, T. Yu, H. Zhang and H. J. Fan, *Advanced Energy Materials*, 2013, **3**, 737-743.
- 21. Y. Luo, J. Luo, J. Jiang, W. Zhou, H. Yang, X. Qi, H. Zhang, H. J. Fan, D. Y. W. Yu, C. M. Li and T. Yu, *Energy & Environmental Science*, 2012, **5**, 6559-6566.