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1. Structural analysis

Structural analysis of the samples (graphite, GO, L-ARGO, as grown MWNTs, air 

oxidized MWNTs, MWNTs, f-MWNTs) has been carried out by recording the powder XRD 

pattern.  The peak centered at 2θ=26.5° (Fig. S1 (a)) corresponds to the (002) hexagonal planes 

of crystalline graphite. In Fig. S1 (b), shift of (002) peak to 2θ= 10° shows an increase in 

interlayer spacing. This confirms the successful oxidation of graphite by intercalation of oxygen 

containing functional groups. After reduction, the peak shifted back to 2θ = 26.5° with 

broadening indicates the removal of functional groups during reduction of GO and loss of long 

range order (Fig. S1(c)). In Fig. S1 (d-g) the diffraction peaks at 2θ=26.5° corresponds to (002) 

hexagonal graphitic plane. The other peaks denoted by ‘*’ shows the presence of catalyst 

impurity (MmNi3-H). The peaks for MmNi3-H are not defined since after hydrogenation the 

material shows amorphization which results shift in peak position.  The absence of MmNi3-H 

peaks in MWNTs confirms removal of catalyst impurities by acid treatment.  
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Fig. S1. XRD of (a) graphite, (b) GO, (c) L-ARGO, (d) as grown MWNTs, (e) air oxidized 
MWNTs, (f) MWNTs and (g) f-MWNTs.

An investigation of the functional groups present in graphite, GO and L-ARGO, MWNTs 

and f-MWNTs are done by FTIR analysis. Fig. S2 (a -c) show the FTIR spectra of Graphite, GO, 

Graphene. The graphite spectrum contains broad peak centered at 3454 cm-1 and 1624 cm-1 due 

to the vibrations of water molecules. The peaks at 2924 cm-1 and 2858 cm-1 represents symmetric 

and antisymmetric stretching vibrations of –CH2 
1. GO contains highly broadened and intense 

peaks at 3454 cm-1 and at l624 cm-1 indicates the stretching vibrations –OH represents that the 

GO samples contain large quantity of adsorbed water 2.  Intense peaks of  C=O and C–O 

stretching vibrations of COOH groups at 1725 cm-1 and 1390 cm-1 can also be found 3. After 

reduction the –OH functional groups are removed completely. The presence of peaks at 2924 cm-

1 and 2858 cm-1 corresponding to the vibrations of –CH2 
4.  The intensities of peaks at 1725cm-1, 

1370 cm-1 and 1390 cm-1 corresponding to C=O, C–O and –OH of COOH groups also reduced 

after reduction shows a partial removal of the these groups in the form of water vapour 5.
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Fig.  S2. FTIR spectrum of (a) graphite, (b) GO, (c) L-ARGO, (d) MWNTs and (e) f-MWNTs.

Functional groups on the surface of MWNTs by acid functionalization process act as anchoring 

sites for the attachment of metal nanoparticles. Fig. S2 (d & e) show the FTIR spectra of 

MWNTs and f-MWNTs. In f- MWNTs, a strong and broad peak can be seen around 3427 cm-1, 

which corresponds to stretching mode of OH functional groups6, 7 and bands around 2922 cm-1 

and 2874 cm-1 are attributed to the asymmetric and symmetric  stretching of C-H bond. The peak 

at 1634 cm-1 is due to the C=C stretching mode and the peak at 1384 cm-1 is due C-O stretching 

vibrations of COOH groups8, 9.

Fig. S3. Raman spectra of (a) graphite, (b) GO and (c) L-ARGO. (d) MWNTs and (e) f-
MWNTs.
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Raman spectroscopy is a tool which is used to identify carbonaceous samples from their 

vibrational spectra. Fig. S3 (a) – (c) shows the Raman spectra of graphite, GO, L-ARGO. The 

absence of the D- band peak in graphite indicates which is defect free. The presence of peak at 

2717 cm-1 is the overtone of the D band called 2D band. G band, corresponding to the E2g mode 

of sp2 carbon atoms at 1582 cm-1 10. The G band of GO is located at 1596 cm-1, while that of L-

ARGO is shifted back to 1584 cm-1 due to the reduction of GO. The chemical treatments 

followed to obtain GO and its reduction to get L-ARGO induce defects in the graphitic structure. 

The ratio between the intensities of the D and G bands is used to identify the presence of defects 

in the samples. The ratio of the intensities of the D and G bands, ID/IG, is calculated to measure 

the degree of defects 11.  Fig. S3 (d & e) show the Raman spectra of purified MWNTs, f-

MWNTs. the peak at 1576 cm-1 (G-band) is due to the Raman-active E2g mode analogous to that 

of graphite 12, while the peak at 1348 cm-1 is D band , which is due to the defects or disorder 

present in MWNTs 13, 14. The intensity of D-band is an indication of degree of disorder present in 

the nanotube. In f-MWNTs, the intensity of the D-band is higher since the functionalization adds 

carboxyl and hydroxyl functional groups on MWNTs which acts as anchoring sites for metal 

nanoparticles decoration. Table S1 shows the ID/IG ratio.

Table S1.ID/IG calculated from Raman spectra.

sample ID/IG

MWNTs 0.95194

f-MWNTs 0.9788

Graphite 0.5923

GO 0.9975

L-ARGO 1.0458
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2. FESEM and TEM images 

Fig. S4. FESEM images of (a) as grown MWNTs, (b) Graphite

3. Thermogravimetric analysis (TGA)

Fig. S5 shows the thermogravimetric analysis of Pt/L-ARGO and Pt/f-MWNTs in air atmosphere 

within a temperature range of room temperature to 1200 °C. TGA was carried out using a SDT 

Q600, TA instruments. The weight loss below 200 °C is observed due to the adsorbed water 

content in the sample. The weight percent shown after 700 °C is corresponding to loading level 

of platinum in the sample. The loading of platinum remaining in Pt/L-ARGO and Pt/f-MWNTs 

is 34 wt% and 30 wt% respectively.

Fig. S5. TGA curve of (a) Pt/L-ARGO and (b) Pt/f-MWNTs
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4. Polarization Curves

Fig. S6. Polarization curves recorded at 40 °C, 50 °C and 60 °C with one atmospheric back 
pressure for (a) MEA-1, (b) MEA-2, (c) MEA-3, (d) MEA-4 and (e) MEA-5
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