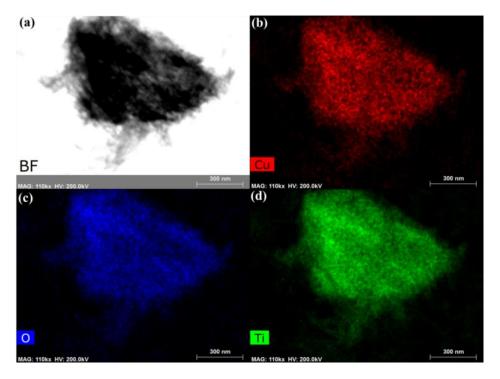
Supporting information


TiO₂-supported copper nanoparticles prepared via ion exchange for hydrogen production

Hao Tian, Xiaoli Zhang,* Jason Scott, Charlene Ng and Rose Amal*

School of Chemical Engineering, the University of New South Wales, Sydney, NSW 2052, Australia.

E-mail: r.amal@unsw.edu.au; xiaolizhang.z@gmail.com; Fax: +61 293855966; Tel: +61 293854361

Characteristics of copper titanate and Cu/TiO₂ photocatalysts

Figure S1. EDX compositional mapping analysis for ion-exchanged copper titanate: (a) TEM image used for EDX analysis; (b) Cu element mapping; (c) O element mapping; and (d) Ti element mapping.

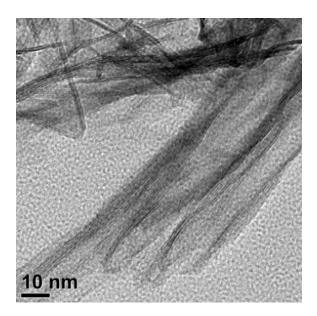
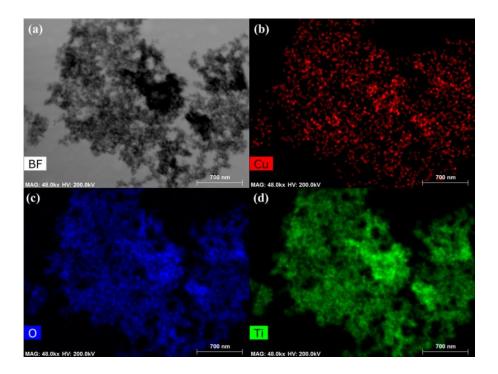
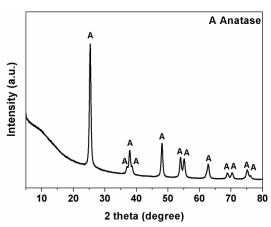




Figure S2. HRTEM image of sodium titanate.

Figure S3. EDX compositional mapping analysis for IE Cu/TiO₂: (a) TEM images used for EDX analysis; (b) Cu element mapping; (c) O element mapping; and (d) Ti element mapping.

Figure S4. XRD pattern of neat IE TiO₂ particles derived from calcining hydrogen titanate. The hydrogen titanate was produced by exchanging H⁺ with Na⁺ in sodium titanate.

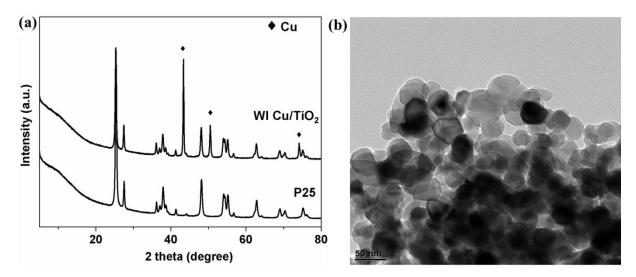
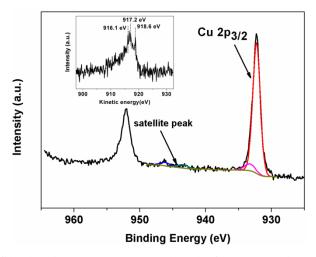



Figure S5. (a) XRD patterns of P25 and WI Cu/TiO₂; (b) TEM image of WI Cu/TiO₂.

Figure S6. XPS profile showing Cu 2p core level peaks for WI Cu/TiO₂. Insert depicts Cu LMM Auger spectra of WI Cu/TiO₂.

Table S1. Concentrations of Cu^{2+} in solution for IE Cu/TiO_2 and WI Cu/TiO_2 after each cycle for three sequential photocatalytic hydrogen production reaction cycles. 'Total copper' represents the copper concentration in solution if all the copper was dissolved from the Cu/TiO_2 surface.

	Copper ion concentration (mg/L)	
	IE Cu/TiO ₂	WI Cu/TiO ₂
Before reaction	0.18±0.05	0.16±0.05
Cycle 1	1.56±0.05	2.69 ± 0.05
Cycle 2	1.67±0.05	2.87±0.05
Cycle 3	1.62±0.05	2.67±0.05
Total copper	189	184