Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Fig S1. Absorption spectra of unsensitized and sensitized TiO₂ NTA film with different deposition cycles annealed at 300°C.

Electrode TiO2 NTA/ZnxCd1-xSe	Annealing Temperature	No. of deposition cycles		
		3 cycles	5 cycles	7 cycles
	UA	2.77	5.23	4.74
	200°C	3.88	7.21	7.52
	300°C	7.62	11.48	12.71

T1. Table summarizing the photocurrent values from I-V analysis

Electrode	Annealing Temperature	No. of deposition cycles		
TiO ₂ NTA/Zn _x Cd _{1-x} Se		3 cycles	5 cycles	7 cycles
	UA	1.99	5.02	4.96
	200°C	3.49	6.52	7.84
	300°C	6.70	12.02	12.04

T1. Table summarizing the photocurrent values from I-t analysis

Fig S2. Histogram depicting diameter of nanotubes.

Raman Analysis

Raman spectra of TiO₂ NT/Zn_xCd_{1-x}Se(7)-300°C is shown below (Fig. S3). The Raman features at 148, 414, 515 and 632 cm⁻¹ correspond to TiO₂ nanotubes. An additional feature was observed at 206 cm⁻¹ for the composite film. The peak in question can be attributed to CdSe with another dopant.¹ This data indicates the formation of $Zn_xCd_{1-x}Se$ alloy.

Further, as secondary confirmation, Raman features for $Zn(NO_3)_2.6H_2O$ (at 390 cm⁻¹)² and ZnO were (437 and 574 cm⁻¹)³ were not observed. Since the starting material, $Zn(NO_3)_2.6H_2O$, and the only other possibility, ZnO, were not found, the only explanation for Zn^{2+} seen in XPS is its presence in $Zn_xCd_{1-x}Se$.

Fig S3. Raman spectra for the composite film TiO₂ NT/Zn_xCd_{1-x}Se(7)-300°C.

Stability Study

Long term I-t study showed that the photocurrent decreased by 53.88% after 2 hours and by 79.6% after about 24 hours (Fig. S4).

Fig S4. Long term I-t analysis curve obyained for TiO₂ NTA/ZnCdSe(7)-300°C film.

To confirm the chemical stability of the photoelectrode, XPS was used to analyze the surface of the film before and after I-t analysis. All the sensitized species (Zn, Cd and Se) were found to be intact on the surface of the film after stability test. To further confirm that $Zn_xCd_{1-x}Se$ was not converted to $Zn_xCd_{1-x}S$, a core-level scan was carried out (Fig. S5) in the low binding energy region (10-20 eV) to confirm the absence of characteristic S 5s peak (~15eV) of CdS (Fig. S6). Though not optimal, only the 5s peak of the S could be used due to interference from Se/Cd at all other binding energy levels. Even at this level Cd 4 (~10eV) is close but does not directly interfere in analysis of S 5s peak. S 5s peak is absent in the sample proving that S did not replace Se. The presence of S 5s in CdS was demonstrated (as a control) by core-level spectrum of standard CdS (Fig. S6)

Peak label	Due to BE (eV)		FWHM	
А	Cd 4d	10.4	1.0	

Fig. S5: XPS spectra of TiO₂ NTA/ZnCdSe(7)-300°C film after long term i-t analysis. The peak shown here is due to Cd 4d.

Peak label	Due to	BE (eV)	FWHM
А	Cd 4d	11.8	1.0
В	S 5s	15.5	1.1

Fig S6: XPS data for Standard CdS (peak at lower binding energy corresponds to Cd 4d). spectrum is not charge corrected.

References

- 1. V. M. Dzhagan, M. Y. Valakh, A. G. Milekhin, N. A. Yeryukov, D. R. T. Zahn, E. Cassette, T. Pons and B. Dubertret, *The Journal of Physical Chemistry C*, 2013, **117**, 18225-18233.
- 2. A. Wahab and S. Mahiuddin, *Journal of Chemical & Engineering Data*, 2004, **49**, 126-132.
- 3. Z. Zhaochun, H. Baibiao, Y. Yongqin and C. Deliang, *Materials Science and Engineering: B*, 2001, **86**, 109-112.