Electronic Supplementary Information (ESI)

Structural flexibility of a copper-based metal organic framework: sorption of C₄-

hydrocarbons and in situ-XRD

Marcus Lange,^{*a*} Merten Kobalz,^{*b*} Jens Bergmann,^{*b*} Daniel Lässig,^{*b*} Jörg Lincke,^{*b*} Jens Möllmer,^{*a*} Andreas Möller,^{*a*} Jörg Hofmann,^{*a*} Harald Krautscheid,^{*b*} Reiner Staudt^{*c*} and Roger Gläser ^{*a*}

^{*a*} Institut für Nichtklassische Chemie e.V., Permoserstraße 15, D-04318 Leipzig, Germany

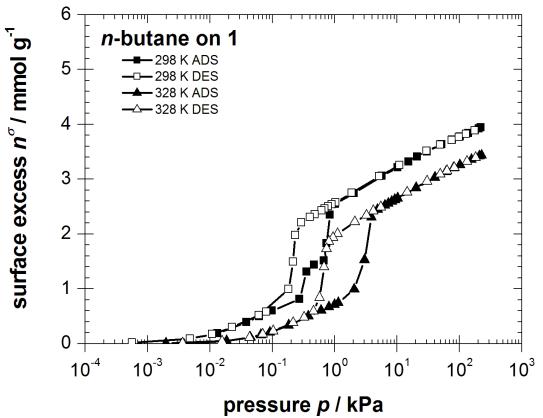
^b Universität Leipzig, Fakultät für Chemie und Mineralogie, Johannisallee 29, D-04103 Leipzig, Germany

^c University of Applied Sciences Offenburg, Badstraße 24, D-77652 Offenburg, Germany;

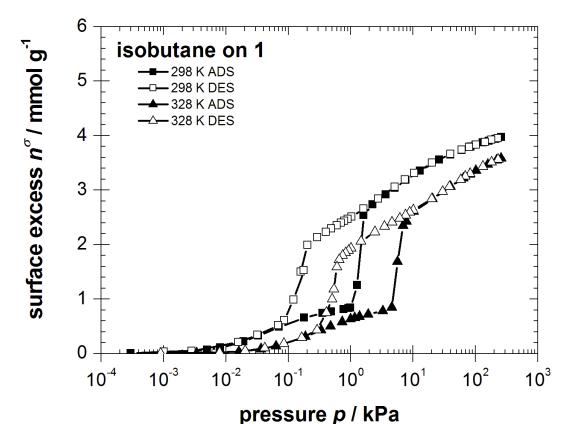
Tables

	After	After 1 st pore filling		Saturation	Ref.	
	p/p ₀	V_{pore} / $cm^3 g^{-1}$	p/p ₀	V _{pore} / cm ³ g ⁻¹		
N ₂ at 77 K	0.001	0.16	0.90	0.58	1	
CO ₂ at 298 K	0.050	0.13	0.90	0.53		
N ₂ at 77 K	0.030	0.16	0.60	0.59	this study	
CO ₂ at 298 K	0.001	0.14	0.68	0.54		

Table SI 1 Pore volumes of $^{3}_{\infty}$ [Cu₄(μ_4 -O)(μ_2 -OH)₂(Me₂trz*p*ba)₄] (1) for N₂/77 K and CO₂/298 K sorption.


Table SI 2 Physical properties including critical temperature (T_c), critical pressure (p_c), critical density (ρ_c), boiling point (T_b) and density at boiling point (ρ_b) of carbon dioxide, nitrogen and C₄-hydrocarbons.

	CO ₂	N_2	<i>n</i> -butane	isobutane	1-butene	isobutene
T _C / K	304.15	126.25	425.15	408.13	419.65	417.85
p _C / MPa	7.38	3.40	3.80	3.65	4.02	4.00
$ ho_{ m C}$ / (g cm ⁻³)	0.468	0.314	0.228	0.221	0.234	0.234
T _b / K	-	77.15	272.65	261.45	266.95	266.05
$ ho_{ m b}$ / (g cm ⁻³)	-	0.809	0.601	0.594	0.626	0.626


Table SI 3 Parameters for Langmuir-Fits for different temperatures with fixed N_{max} (283 K).

	283 K	298 K	313 K	328 K	343 K				
	<i>n</i> -butane on 1 with fixed N _{max}								
N _{max} / mmol g ⁻¹	0.980								
b / kPa ⁻¹	53.981	16.867	6.307	2.759	1.282				
R ²	0.99954	0.99915	0.99927	0.99899	0.99902				
	isobutane on 1 with fixed N _{max}								
N _{max} / mmol g ⁻¹			0.858						
b / kPa ⁻¹	54.111	18.294	6.585	2.887	1.428				
R ²	0.99960	0.99985	0.99965	0.99957	0.99982				
		1-butene	on 1 with fixe	ed N _{max}					
N _{max} / mmol g ⁻¹	1.501								
b / kPa ⁻¹	20.449	6.380	2.214	0.976	0.562				
R ²	0.98974	0.98993	0.99116	0.98607	0.98716				
	isobutene on 1 with fixed N _{max}								
N _{max} / mmol g ⁻¹			2.124						
b / kPa ⁻¹	7.415	3.267	1.377	0.598	0.305				
<u>R²</u>	0.99279	0.99904	0.99319	0.99589	0.98845				

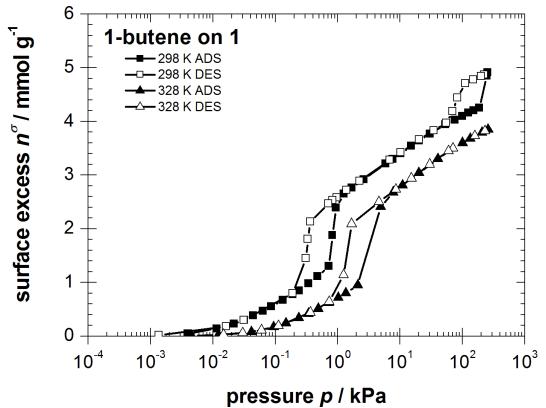

Figures

Fig. SI 1 Surface excess as a function of pressure for the sorption of *n*-butane on **1** at 298 K and 328 K (ADS: adsorption, DES: desorption).

Fig. SI 2 Surface excess as a function of pressure for the sorption of isobutane on 1 at 298 K and 328 K (ADS: adsorption, DES: desorption).

Fig. SI 3 Surface excess as a function of pressure for the sorption of 1-butene on 1 at 298 K and 328 K (ADS: adsorption, DES: desorption).

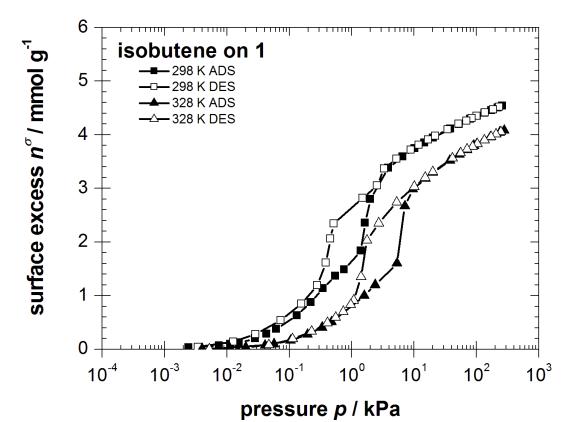
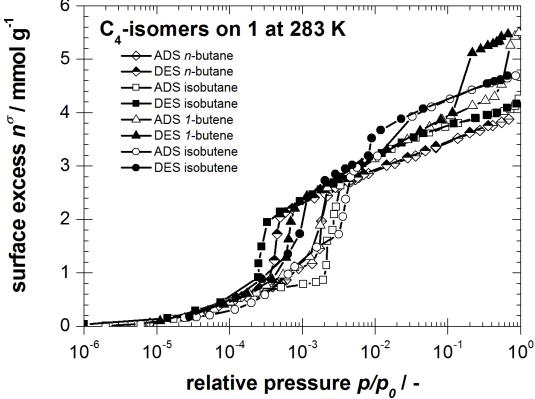
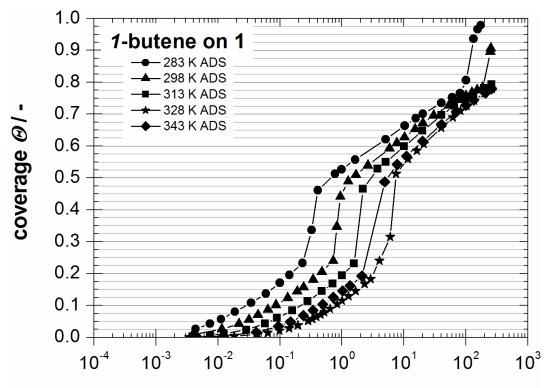




Fig. SI 4 Surface excess as a function of pressure for the sorption of isobutene on 1 at 298 K and 328 K (ADS: adsorption, DES: desorption).

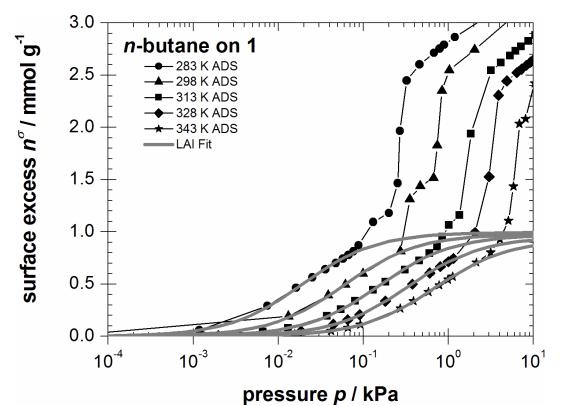
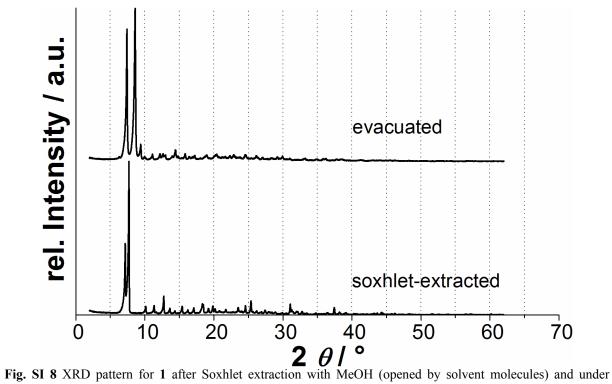


Fig. SI 5 Adsorption (ADS, open symbols) and desorption (DES, closed symbols) isotherms of investigated C₄-hydrocarbons, including *n*-butane (diamonds), isobutane (squares), 1-butene (triangles) and isobutene (circles) on 1 at 283 K up to relative pressures $p/p_0 = 1$.



pressure p / kPa

Fig. SI 6 Coverage of 1-butene on 1 as a function of Pressures for different temperatures. Intermediate values were interpolated.

Fig. SI 7 Adsorption isotherms of *n*-butane on **1** at 283 K (circles), 298 K (triangles), 313 K (squares), 328 K (diamonds) and 343 K (stars) with Langmuir-Fits (strong grey lines) for pore filling in low pressure region – black lines are to guide the eyes.

vacuum.

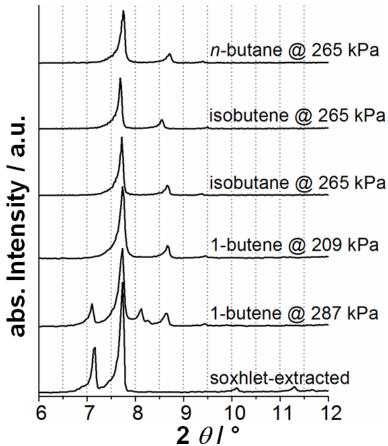


Fig. SI 9 XRD patterns of 1 filled with solvent molecules (after MeOH Soxhlet extraction) and with different sorptives at 298 K and comparable pressures.

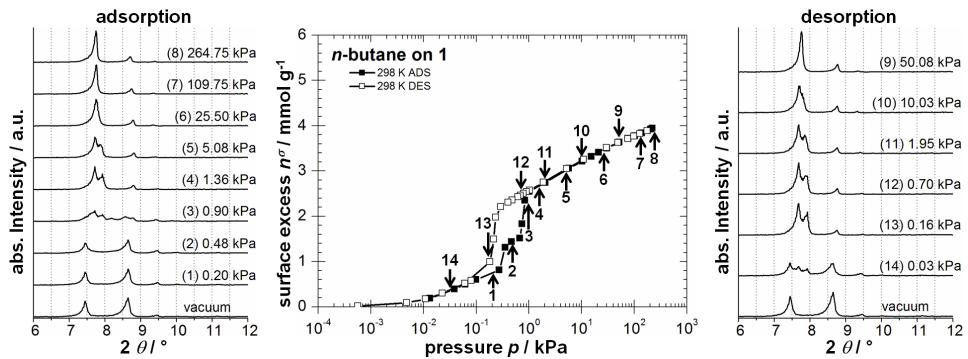


Fig. SI 10 Adsorption (closed symbols) and desorption (open symbols) isotherm of *n*-butane on 1 (center) at 298 K and XRD patterns of 1 at different pressures for adsorption (left) and desorption (right). The respective points on the sorption isotherms at which the XRD patterns were recorded are labelled as 1 - 14. The gate-opening is observed at about 1 kPa (point 3).

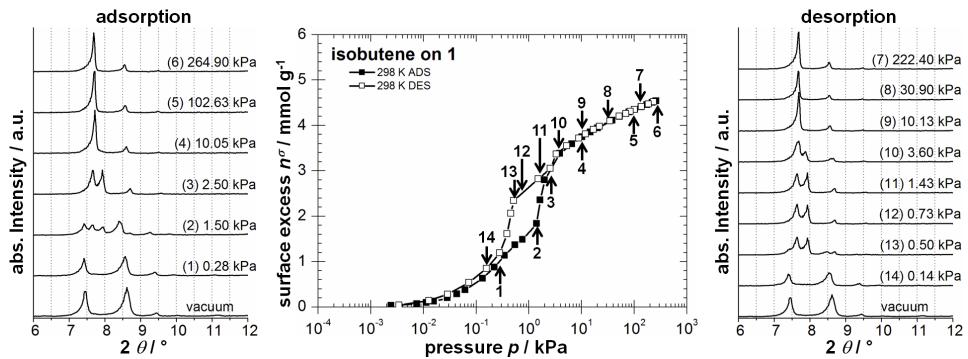


Fig. SI 11 Adsorption (closed symbols) and desorption (open symbols) isotherm of isobutene on 1 (center) at 298 K and XRD patterns of 1 at different pressures for adsorption (left) and desorption (right). The respective points on the sorption isotherms at which the XRD patterns were recorded are labelled as 1 - 14. The gate-opening is observed at about 1.5 kPa (point 2).

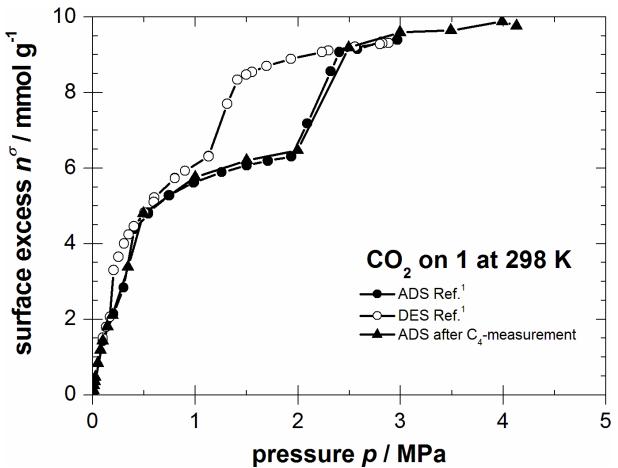


Fig. SI 12 Adsorption and desorption isotherms of carbon dioxide on 1 at 298 K after C_4 -hydrocarbon sorption experiments compared to published data byRef.¹

References

 J. Lincke, D. Lässig, J. Möllmer, C. Reichenbach, A. Puls, A. Möller, R. Gläser, G. Kalies, R. Staudt, H. Krautscheid, *Micropor. Mesopor. Mater.*, 2011, 142, 62-69.