Electronic Supplementary Information (ESI)

3D Mesoporous Hybrid NiCo₂O₄@graphene Nanoarchitecture as Electrode Materials for Supercapacitors with Enhanced Performances

Yiying Wei^{a, b}, Shuangqiang Chen^a, Dawei Su^a, Bing Sun^a, Jianguo Zhu^{*b} and Guoxiu Wang^{*a}

^a Centre for Clean Energy Technology, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia. E-mail: Guoxiu.Wang@uts.edu.au

^b Centre for Electrical Machines and Power Electronics, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia. Email: Jianguo.Zhu@uts.edu.au

Fig. S1 The SEM images of the (A, B) PU-sponge, showing macroporous structure; (C, D) RGO-PU-sponge, indicating RGO was coated onto PU-sponge.

Fig. S2 The SEM images of (A, B) large-size $NiCo_2O_4$ @graphene obtained by annealing the precursor at 350 °C in air for 2 hours; TEM images of (C) $NiCo_2O_4$ @graphene nanoarchitectures with macropores, (D) mesopores ranging from 2-5nm.

Fig. S3 (A) Nitrogen adsorption/desorption isotherms; (B) pore size distribution of $NiCo_2O_4(a)$ graphene nanoarchitectures.

Fig. S4 Electrochemical performance of NiCo₂O₄@graphene nanoarchitectures and bare NiCo₂O₄ (A) Charging/discharging curves at a current density of 10 A g⁻¹; (B) Specific capacitances at current densities of 1 to 80 A g⁻¹; (C) Capacities retention up to 10000 cycles at 10 A g⁻¹;

Fig. S5 Charging/discharging profile of pure Ni foam at different current densities, ranging from 1 to 40 A g^{-1} ;

<u>Table S1. Comparison of the electrochemical performance of as-prepared</u> <u>NiCo₂O₄@graphene with NiCo₂O₄ materials reported in the literatures</u>

References	Mass loading	2 or 3 electrode configurat ion	Specific Capacitance (F g ⁻¹) at 1 A g ⁻¹	Maximum Current Densities (A g ⁻¹)	Capacity Retention Cycle and Current Densities	Cycles
As-prepared NiCo ₂ O ₄ @graphene	1 mg cm ⁻¹	3	778	80	90% at 10 A g ⁻¹	10000
W. Chen et. al ¹		3	743	40	93.8% at 1 A g ⁻¹	3000
Te-Yu Wei et. al ²	0.4 mg cm ⁻¹	3	719 (at 25mV s ⁻¹)	25mV s ⁻¹	91% at 25mV s ⁻	2000
H. Wang et. al ³	1 mg cm ⁻¹	3	722	20	80% at 10 A g ⁻¹	3000
H. W. Wang et. al ⁴	2 mg cm ⁻¹	3	835	16		4000

References:

- 1. H. Jiang, J. Ma and C. Li, *Chemical Communications*, 2012, **48**, 4465-4467.
- 2. T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu and C. C. Hu, *Advanced materials*, 2010, **22**, 347-351.
- 3. H. Wang, Q. Gao and L. Jiang, *Small*, 2011, **7**, 2454-2459.
- 4. H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, H.-Y. Wu, Z.-Y. Zhang and Y.-Y. Yang, *Journal of Materials Chemistry*, 2011, **21**, 10504-10511.