Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

## **Electronic Supplementary Information**

## Coral-Like Film of Ni@NiS with Core-Shell Particles for the Counter Electrode of an Efficient Dye-Sensitized Solar Cell

Hui-Min Chuang,<sup>a,+</sup> Chun-Ting Li,<sup>a,+</sup> Min-Hsin Yeh,<sup>a</sup> Chuan-Pei Lee,<sup>a</sup> R.Vittal,<sup>a</sup> and Kuo-Chuan Ho<sup>a,b,\*</sup>

<sup>a</sup> Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan <sup>b</sup>Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

\* To whom correspondence should be addressed: <u>kcho@ntu.edu.tw</u> (K. C. Ho)

<sup>+</sup> These authors contributed equally





Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014



**Fig. S2.** (a) Cyclic voltammograms of the CE with 200-Ni@NiS, obtained for 100 cycles; (b) corresponding anodic and cathodic peak current densities ( $J_{pa}$  and  $J_{pc}$ , respectively) as functions of

number of cycles. The CVps were obtained in the electrolyte containing 10.0 mM LiI, 1.0 mM  $I_2$ , and 0.1 M LiClO<sub>4</sub> in ACN, at a scan rate of 100 mV/s.