Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI)

Prussian blue analogues: a new class of anode materials for

lithium ion batteries

Ping Nie, Laifa Shen, Haifeng Luo, Bing Ding, Guiyin Xu, Jie Wang, and Xiaogang Zhang^{*}

College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China *Corresponding author, azhangxg@163.com; Tel: +86-25-52112918; Fax: +86-25-

52112626.

Fig. S1 Size distribution histograms of as-synthesized $Co_3[Co(CN)_6]_2$ nanocubes.

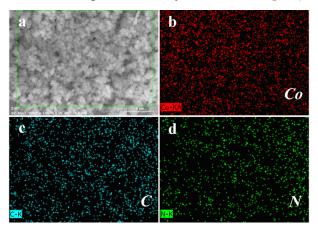


Fig. S2 Elemental mapping images of (b) cobalt, (c) carbon, and (d) nitrogen in

 $Co_3[Co(CN)_6]_2{\cdot}nH_2O \text{ nanocubes}.$

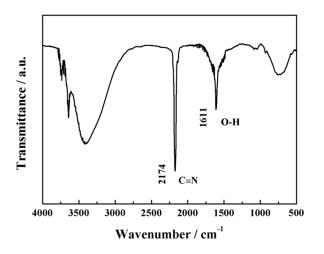


Fig. S3 FTIR spectrum of the $Co_3[Co(CN)_6]_2$ sample.

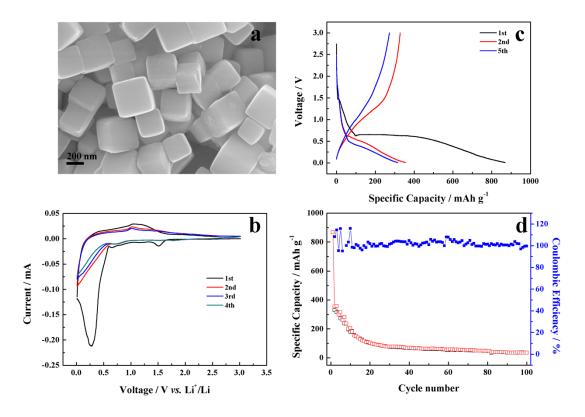


Fig. S4 (a) SEM image, (b) CV curves of the first four cycles between 0.01-3 V at a scanning rate of 0.1 mV s⁻¹, (c) Galvanostatic charge/discharge profiles of the 1st, 2nd, and 5th cycles, and (d) Cycling performance and Coulombic efficiency of Mn₃[Co(CN)₆]₂·nH₂O electrode under a current density of 50 mA g⁻¹.

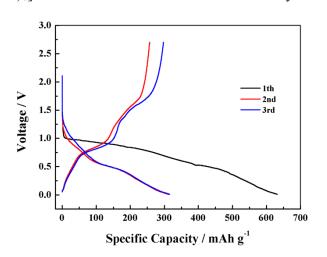


Fig. S5 The 1st, 2nd and 3rd discharge and charge profiles of $Co_3[Co(CN)_6]_2 \cdot nH_2O$ nanocubes between 0.01 and 2.7 V *vs*. Na/Na⁺ at a current density 20 mA g⁻¹.

Currently, there exists growing scientific and commercial interest in roomtemperature sodium-ion batteries (NIBs) technology owing to abundant supply and low cost of sodium resources.¹ Herein, we have also investigated the use of $Co_3[Co(CN)_6]_2 \cdot nH_2O$ as anode material for NIBs. Coin cells for sodium-ion batteries were fabricated using the same procedure for Li batteries. The electrolyte was 1 M NaClO₄ dissolved in a mixture of ethylene carbonate (EC) and propylene carbonate (PC) with a volume ratio of 1:1. Na metal was used as the reference and counter electrode, and a glass microfiber filter as the separator. Fig. S5 show the discharge/charge profiles of $Co_3[Co(CN)_6]_2 \cdot nH_2O$ electrode between 0.01 and 2.7 V *vs.* Na/Na⁺ at current density of 20 mAh g⁻¹. As shown in Fig. S5, the galvanostatic charge-discharge profiles are similar to that in Li-ion batteries except the lower charge/discharge potentials. The initial discharge and charge capacities are about 631.3 and 256.7 mAh g⁻¹, respectively. The reversible capacity in the second cycle is almost stable and maintained at about 311.6 mAh g⁻¹. The results demonstrate that the material can be used as a promising anode candidate for NIBs.

1. H. Pan, Y.-S. Hu and L. Chen, *Energy Environ. Sci.*, 2013, **6**, 2338-2360.