Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Weight and Surface Area Estimations of TiO₂-NT/(Zn,Sn)Pd-ND and P25

(1) Weight of TiO₂-NT/(Zn,Sn)Pd-ND (1 cm² sample)

 $=\frac{\text{total weight with Ti substrate} - \text{weight of Ti substrate}}{\text{large sample size (total area)}} = \frac{0.5773 - 0.5655}{9.6} = 10^{-3} \text{ g}$

(2) TiO₂ NT inner diameter $d \sim 190$ nm, outer diameter $D \sim 250$ nm, height $H \sim 500$ nm

Inner surface area of each TiO₂ NT = $2\pi \left(\frac{d}{2}\right) \times H = 3.0 \times 10^{-9} \text{ cm}^2$

Outer surface area of each TiO₂ NT = $2\pi \left(\frac{D}{2}\right) \times H = 3.9 \times 10^{-9} \text{ cm}^2$

Number density of TiO₂ NTs $\sim \frac{14}{1.1 \times 10^6}$ NT/nm² = 1.3×10⁹ NT/cm²

Total surface area of TiO₂ NTs (1 cm² sample) = $(6.9 \times 10^{-9}) \times (1.3 \times 10^{9}) = 9.0 \text{ cm}^2$

(3) Size of P25 NPs $S \sim 25$ nm, gravity density $G \sim 4.0$ g/cm³

Surface area of each P25 NP = $4\pi \left(\frac{S}{2}\right)^2 = 4\pi \left(\frac{25}{2}\right)^2 = 2.0 \times 10^{-11} \text{ cm}^2$ Weight of each P25 NP = $\frac{4\pi}{3} \left(\frac{S}{2}\right)^3 \times G = \frac{4\pi}{3} \left(\frac{25}{2}\right)^3 \times 4.0 = 3.3 \times 10^{-17} \text{ g}$

Number of P25 NPs (10⁻³ g sample) = $\frac{10^{-3}}{3.3 \times 10^{-17}} = 3.0 \times 10^{13}$

Total surface area of P25 NPs (10^{-3} g sample) = (2.0×10^{-11}) (3.0×10^{13}) = 6.0×10^{2} cm²

Bonding Configuration and Composition Analyses of TiO₂-NT/(Zn,Sn)Pd-ND

Doole	Binding Energy (eV)		FWHM (eV)		Araa	DCC†	Area/	Content	Content
Реак	Reference	Present	Reference	Present	Alea	К.З.Г.	R.S.F.	(at.%)	(at.%)*
Pd 3d5/2	335.5 [1]	335.6	1.25 [2]	1.15	70457	1192 (77	(1.27	70.01	01.20
Pd 3d3/2	340.8 [3]	340.9	1.10 [4]	1.20	/243/	1182.0//	01.27	/2.21	81.50
Sn 3d5/2	485.1 [5]	485.3	1.00 [6]	1.10	1224	1716 200	0.72	0.95	0.05
Sn 3d3/2	493.5 [6]	493.7	1.80 [8]	1.80	1234	1/10.800	0.72	0.85	0.95
Sn 3d5/2-SnO2	487.1 [7]	487.1	1.40 [6]	1.40	2752	1716 200	2 10	2.50	
Sn 3d3/2-SnO2	495.5 [6]	495.5	1.45 [8]	1.50	3752	1/10.800	2.19	2.38	
Zn 2p3/2	1022.0 [9]	1022.1	2.00 [9]	2.00	11445	955 045	12.27	1576	1774
Zn 2p1/2	1045.1 [9]	1045.1	1.95 [9]	2.05	11445	833.943	13.3/	15.70	17.74
Ti 2p3/2-TiO2	459.3 [10]	459.3	1.20 [11]	1.20	3093	423.679	7.30	8.60	
Ti 2p1/2-TiO2	465.1 [10]	465.1	1.20 [12]	1.50					

Table S1. XPS binding energies and full widths at half maximum (FWHMs) of Pd_{3d} , Sn_{3d} , Zn_{2p} and Ti_{2p} peaks and the compositions of (Zn,Sn)Pd NDs on TiO₂ NTs.

[†] Relative sensitivity factor; * contents without considerations of SnO_2 and TiO_2 . Note: Auger spectrum of Zn LMM present in the XPS $Sn_{3d3/2}$ spectrum in Figure 4 is considered during bonding configuration analyses and excluded from the composition analyses of Sn.

Growth Orientation Examinations of (Zn,Sn)Pd NDs

From the standard interplanar spacing (*d*) and angles of fcc Pd (JCPDS No. 46-1043) listed in Supplemental **Table S2**, and the standard SAD pattern of fcc Pd (zone axis [101])) plotted in Supplemental **Figure S1**, the growth orientations of (Zn,Sn)Pd NDs in different regions of **Figure 4** were determined as given in Supplemental **Figure S2** as:

- R1: measured $d_{111} = 0.224$ nm, angle to primary arm = $70^\circ \rightarrow$ growth direction: [11];
- R2: measured $d_{111} = 0.224$ nm, angle to branch = 70°; measured $d_{101} = 0.260$ nm, angle to branch = $35^\circ \rightarrow$ growth direction: [11];

R3: measured $d_{101} = 0.260$ nm, angle to primary arm = $35^\circ \rightarrow$ growth direction: [111];

R4: measured $d_{010} = 0.390$ nm, angle to branch = 55° \rightarrow growth direction: [111].

Plane	{100}	{110}	{111}
d (nm)	0.3890	0.2751	0.2246
{100}	90.0°		
{110}	45.0°	60.0°	
{111}	54.7°	35.3°	70.5°

Table S2. Standard interplanar spacing (d) and

angles of fcc Pd (JCPDS No. 46-1043).

 $(\overline{1}\,\overline{1}\,\overline{1})$ (020) ($\overline{1}\,\overline{1}\,\overline{1}$) (020) ($\overline{1}\,\overline{1}\,\overline{1}$) (020) ($\overline{1}\,\overline{1}\,\overline{1}$) (111) ($\overline{2}\,\overline{2}\,\overline{2}$) (111) ($\overline{2}\,\overline{2}\,\overline{2}$) (111)

Figure S1. Standard SAD pattern of fcc Pd (zone axis [101]).

Figure S2. High-resolution TEM images and corresponding standard SAD patterns (zone axis [101]) showing the growth orientations of (Zn,Sn)Pd NDs in different regions of Figure 4 (R1, R2, R3, R4) all along <111> direction group.

References

- A. M. Venezia, A. Rossi, D. Duca, A. Martorana and G. Deganello, *Appl. Catal. A-Gen.*, 1995, 125, 113–128.
- J. C. Bertolini, P. Delichere, B. C. Khanra, J. Massardier, C. Noupa and B. Tardy, *Catal. Lett.*, 1990, 6, 215–224.
- 3. S. Shen, T. Zhao, J. Xu and Y. Li, J. Power Sources, 2010, 195, 1001–1006.
- 4. M. C. Militello and S. J. Simko, Surf. Sci. Spec., 1997, 3, 387–394.
- 5. R. B. Shalvoy, G. B. Fisher, P. J. Stiles, *Phys. Rev. B*, 1977, **15**, 1680–1697.
- 6. A. W. C. Lin, N. R. Armstrong and T. Kuwana, Analy. Chem., 1977, 49, 1228–1235.
- M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella and P. Siciliano, Sens. Actuator B-Chem., 1995, 24, 465–468.
- J. M. Themlin, M. Chtáíb, L. Henrard, P. Lambin, J. Darville and J. M. Gilles, *Phys. Rev. B*, 1992, 46, 2460–2466.
- L. Ley, S. P. Kowalczyk, F. R. McFeely, R. A. Pollak and D. A. Shirley, *Phys. Rev. B*, 1973, 8, 2392–2402.
- Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin and J. W. Chin, *J. Electrochem. Soc.*, 2006, 153, D123–D127.
- 11. H. Idriss and M. A. Barteau, Catal. Lett., 1994, 26, 123–139.
- B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie and M. S. El-Aasser, *Langmuir*, 2001, 17, 2664–2669.
- G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, *Sol. Energy Mater. Sol. Cells*, 2006, **90**, 2011–2075.
- C. Gadois, J. Światowska, S. Zanna and P. Marcus, J. Phys. Chem. C, 2013, 117, 1297– 1307.
- 15. J. Pouilleau, D. Devilliers, H. Groult and P. Marcus, J. Mater. Sci., 1997, 32, 5645–5651.