Electronic Supplementary Information (ESI)

Heterostructured poly(3,6-dithien-2-yl-9H-carbazol-9-yl) acetic $acid)/TiO_2$ nanoparticles composite redox-active materials as both anode and cathode for high-performance symmetric supercapacitor applications

Deniz Yiğit,^a Mustafa Güllü,*^a Tuğrul Yumak,^a and Ali Sınağ^a

Fig. S1 ¹ H NMR spectrum of ethyl (3,6-dibromo-9H-carbazol-9-yl)acetate (2a)	2
Fig. S2 Mass spectrum of ethyl (3,6-dibromo-9H-carbazol-9-yl)acetate (2a)	2
Fig. S3 ¹ H NMR spectrum of ethyl (3,6-dithien-2-yl-9H-carbazol-9-yl)acetate (3a)	3
Fig. S4 Mass spectrum of ethyl (3,6-dithien-2-yl-9H-carbazol-9-yl)acetate (3a)	3
Fig. S5 ¹ H NMR spectrum of 3,6-Dithien-2-yl-9H-carbazol-9-yl acetic acid (TCAA)	4
Fig. S6 ¹³ C NMR spectrum of 3,6-Dithien-2-yl-9H-carbazol-9-yl acetic acid (TCAA)	4
Fig. S7 Mass spectrum of 3,6-Dithien-2-yl-9H-carbazol-9-yl acetic acid (TCAA)	5
Fig. S8 Cyclic voltammogram of TCAA in 0.1 M Bu ₄ NF ₄ /ACN at a scan rate of 150 mV s ⁻¹	5
Fig. S9 Schematic representation of the symmetric pseudo-capacitor device	5
Fig. S10 SEM images of (a) raw stainless steel substrate (b) 3-5 nm sized TiO ₂ nanoparticles	6
Fig. S11 TEM images of (a) 3-5 nm sized TiO ₂ nanoparticles (b) 21 nm sized TiO ₂ nanoparticles and (c) bulk TiO ₂ particles	7
Fig. S12 XRD patterns of the hetereostructured (a) pTCAA/TiO ₂ (3-5 nm sized) (b) pTCAA/TiO ₂ (21 nm sized) (c) pTCAA/TiO ₂ (bulk).	9
Fig. S13 Theoretical equivalent circuit modelling of (a) <i>Type IV</i> reference solid state PC device (b) <i>Type I</i> PC device (c) <i>Type II</i> PC device (d) <i>Type III</i> PC device	10

Fig. S1 ¹H NMR spectrum of ethyl (3,6-dibromo-9H-carbazol-9-yl)acetate (2a)

Fig. S2 Mass spectrum of ethyl (3,6-dibromo-9H-carbazol-9-yl)acetate (2a)

Fig. S3 ¹H NMR spectrum of ethyl (3,6-dithien-2-yl-9H-carbazol-9-yl)acetate (3a)

Fig. S4 Mass spectrum of ethyl (3,6-dithien-2-yl-9H-carbazol-9-yl)acetate (3a)

Fig. S5 ¹H NMR spectrum of 3,6-Dithien-2-yl-9H-carbazol-9-yl acetic acid (TCAA)

Fig. S6 ¹³C NMR spectrum of 3,6-Dithien-2-yl-9H-carbazol-9-yl acetic acid (TCAA)

Fig. S7 Mass spectrum of 3,6-Dithien-2-yl-9H-carbazol-9-yl acetic acid (TCAA)

Fig. S8 Cyclic voltammogram of TCAA in 0.1 M Bu₄NF₄/ACN at a scan rate of 150 mV s⁻¹

Fig. S9 Schematic representation of the symmetric pseudo-capacitor device

Fig. S10 SEM images of (a) raw stainless steel substrate (b) 3-5 nm sized TiO_2 nanoparticles

Fig. S11 TEM images of (a) 3-5 nm sized TiO₂ nanoparticles (b) 21 nm sized TiO₂ nanoparticles and (c) bulk TiO₂ particles

Fig. S12 XRD patterns of the hetereostructured (a) $pTCAA/TiO_2$ (3-5 nm sized) (b) $pTCAA/TiO_2$ (21 nm sized) (c) $pTCAA/TiO_2$ (bulk)

Fig. S13 Theoretical equivalent circuit modelling of (a) *Type IV* reference PC device (b) *Type I* PC device (c) *Type II* PC device (d) *Type III* PC device