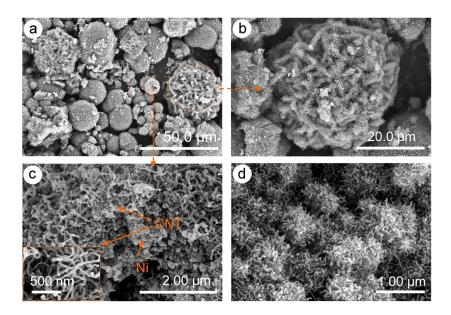
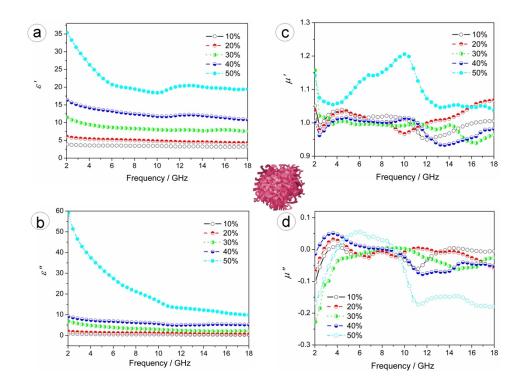
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

for


Rambutan-like Ni/MWCNT Heterostructures: Easy Synthesis, Formation Mechanism, and Controlled Static Magnetic and Microwave Electromagnetic Characteristics

Guoxiu Tong,^{† *} Fangting Liu,[†] Wenhua Wu,[†] Fangfang Du,[†] Jianguo Guan[‡]


[†]College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China

[‡]State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 437000, People's Republic of China

Corresponding authors. Tel.: +86-579-82282269; Fax: +86-579-82282269. E-mail address: tonggx@zjnu.cn (G.X. Tong).

Fig. S1 SEM images of the product obtained produced from different Ni sources at 750 °C of (a–c) $Ni(OH)_2$ and (d) NiO obtained by thermal decomposition of NiC_2O_4 at 300 °C.

Fig. S2 Frequency dependence of (a) real (ε') and (b) imaginary (ε'') parts of the complex permittivity, (c) real (μ') and (d) imaginary (μ'') parts of the complex permeability of wax composites containing various mass fractions of the typical product.