Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting information

for

Click-based Porous Organic Framework Containing Chelating Terdentate Units and Application in Hydrogenation of Olefins

Hong Zhong, Yaqiong Gong, Fengsen Zhang, Liuyi Li, and Ruihu Wang*

Content

S2	Fig. S1 Solid-state UV-vis spectra of DEP, TAM, BTP-POF and Pd/BTP-POF
S2	Fig. S2 TGA curves for BTP-POF and Pd/BTP-POF.
S2	Fig. S3 XRD patterns for BTP-POF and Pd/BTP-POF.
S 3	Fig. S4 N ₂ isotherms of BTP-POF and Pd/BTP-POF at 77 K.
S 3	Fig. S5 H ₂ isotherms of BTP-POF and Pd/BTP-POF at 77 K.
S4	NMR data of starting materials and hydrogenation products
S5-10	NMR spectra of starting materials and hydrogenation products

Fig. S1 Solid-state UV-vis spectra of DEP, TAM, BTP-POF and Pd/BTP-POF

Fig. S2 TGA curves for BTP-POF and Pd/BTP-POF.

Fig. S3 XRD patterns for BTP-POF and Pd/BTP-POF.

Fig. S4 N₂ isotherms of BTP-POF and Pd/BTP-POF at 77 K, (Inset) Pore size distributions of BTP-POF and Pd/BTP-POF.

Fig. S5. H₂ isotherms of BTP-POF and Pd/BTP-POF at 77 K.

NMR data of starting materials and hydrogenation products

2,6-Diethynylpyridine^[1]**:** ¹H NMR: δ 7.67 (t, *J* = 7.6Hz, 1H), 7.47 (d, *J* = 7.6Hz, 1H), 3.18 (s, 2H); ¹³C NMR: δ 142.8, 136.5, 127.1, 82.1 ppm.

Tetrakis(4-azidophenyl)methane^[2]: ¹H NMR: δ 7.15 (d, J = 8.7 Hz, 8H), 6.96 (d, J = 8.7 Hz, 8H); ¹³C NMR: δ 142.9, 138.2, 132.1, 118.4, 63.2.

Hexane: ¹H NMR: δ 1.30-1.35 (m, 8H), 0.92 (t, J = 7.0, 6H); ¹³C NMR: δ 31.6, 22.6, 14.0.

Octane: ¹H NMR: δ 1.31-1.36 (m, 12H), 0.92 (t, J = 7.0, 6H); ¹³C NMR: δ 31.9, 29.3, 22.7, 14.0.

Cyclohexane: ¹H NMR: δ 1.46 (s, 12H); ¹³C NMR: δ 26.9.

Ethylbenzene: ¹H NMR: δ 7.38-7.42 (m, 2H), 7.27-7.33 (m, 3H), 2.27 (q, *J* = 7.6, 2H), 1.37 (t, *J* = 7.6, 3H); ¹³C NMR: δ 144.3, 128.4, 127.9, 125.7, 29.0, 15.7.

References

- (1) S. Leininger, M. Schmitz and P. J. Stang. Org. Lett., 1999, 1, 1921-1923.
- (2) O.Plietzsch, C. I. Schilling, M. Tolev, M. Nieger, C. Richert, T. Muller and S. Bräse. Org. Biomol. Chem., 2009, 7, 4734-4743.

NMR spectra of starting materials and hydrogenation products

