Supporting information

beta-manganese dioxide nanoflowers self-assembled by thin nanoplates with enhanced supercapacitive performance

Li-Li Yu a*, Jun-Jie Zhu a,c, Jing-Tai Zhao b,c*

- ^a Key Laboratory of Transparent Opto-Functional Inorganic Materials of Chinese Academy of Sciences, Shanghai Institute of Ceramics, 1295 Dingxi Road, Shanghai 200050, P.R. China
- ^b School of Material Science and Engineering, Shanghai University, 149 Yanchang Road, shanghai, 200072, P.R. China
- ^c University of Chinese Academy of Sciences, Beijing 100039, P.R. China

Correspond to: jtzhao@mail.sic.ac.cn, lly522@mail.sic.ac.cn

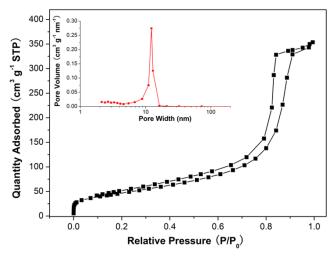


Fig. S1 Nitrogen adsorption-desorption isotherm plots and corresponding pore size distributions (insets) of samples S_{RT} -350

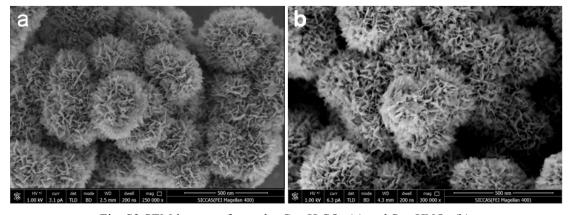


Fig. S2 SEM images of samples S_{RT}-H₂SO₄ (a) and S_{RT}-HNO₃ (b)

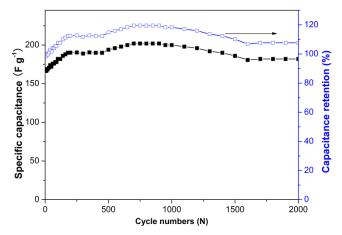


Fig. S3 Charge/discharge cycling life tests of S_{RT} -350 at the current density of 2 A g^{-1}

E and P calculation

Energy density (E) and power density (P) of the as-prepared porous nanoflowers were calculated from the following equations:

$$E = \frac{1}{2}C(\Delta V)^2$$

$$P = \frac{E}{t}$$

Where E (W h Kg⁻¹), C (F g⁻¹), ΔV (V), and P (W kg⁻¹) are energy density specific capacitance, potential window of discharge time, and power density, respectively.