Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI)

Design of CuO/TiO₂ heterostructure nanofiber and sensing preformance

Jianan Deng, Lili Wang, Zheng Lou and Tong Zhang* State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China. Fax: +86 431 85168270; Tel: +86 431 85168385;

E-mail: zhangtong@jlu.edu.cn

Experimental section

*Synthesis of TiO*₂ *NFs:* TiO₂ NFs were synthesized by the method our group reported before¹. Briefly speaking.¹ Brief, tetrabutyl titanate (TBT, 2.0 g) and glacial acetic (2.0 g) were dissolved into ethanol (7.5 g). Then poly-(vinlypyrrolidone) (PVP, 11.5 wt%) solution was added into the above solution. After 4 h stirring, the solution was transferred into a syringe for electrospinning and an applied electric voltage of 20 kV. The obtain products were annealed in air at 500 °C for 2 h.

Fabrication of CuO NCs: 1.7048 g cupric chloride dihydrate was put into 20 mL deionized water with stirring and after the salt was completely dissolved, 0.5 mL of ammonium hydroxide solution (28%) was added into the aqueous solution drop by drop. After another 5 min of continuous agitation, the obtained precursors were then poured into Teflon-lined autoclave which with the capacity of 50 mL. The reaction system was kept at 140 °C for 18 h and cooled naturally, and the final products were collected by centrifugation, then dried under a vacuum pump at 50 °C for 12 h.

Preparation of CuO/TiO₂ HNFs: The method of preparation the CuO/TiO₂ HNFs was similar to the preparation of CuO NCs, except for the addition of TiO₂ NFs. After the resulting solution we mentioned before was transferred into the autoclave, 10 mg of TiO₂ NFs was also added to the system.

Characterizations. The product was characterized by X-ray diffraction (XRD) using a Rigaku D/Max-2550 diffractometer with Cu K α radiation (λ =1.54 Å) (40 kV, 350 mA) in the range of 20-80° (20) at a scanning rate of 6° min⁻¹. The morphologies and structures of the products were obtained by a XL 30 ESEM FEG field emission scanning electron microscope (FESEM). TEM and HRTEM images were recorded with a Tecnai G² 20S-Twin transmission electron microscope operating at an accelerating voltage of 120 and 200 kV, respectively.

Definition of sensing parameter: The electrical properties of the sensor were measured by a RQ-2 series Intelligent Test Meter (China). For n-type semiconductor, the response (S=R_a/R_g) of the sensor is defined as the ratio of sensor resistance in dry air (R_a) to that in a target gas (R_g). For p-type semiconductor, the response (S=R_g/R_a) of the sensor is defined as the ratio of sensor resistance in a target gas (R_g) to that in dry air (R_a). The response and recovery time were defined as the time taken by the sensor to achieve 90% of the total resistance change in the case of adsorption and desorption, respectively.²

Figure S1 (a) Schematic image of the CuO/TiO₂ HNFs sensor; (b) schematic diagram of the electrical circuit for measuring the CuO/TiO₂ HNFs gas sensor.

Figure S2 (a) Comparison in sensor response to different formaldehyde and ethanol concentrations for the CuO/TiO₂ HNFs. (b) response of the CuO/TiO₂ HNFs sensors to 5-50 ppm formaldehyde and ethanol gas.

Figure S3 Response and recovery speed curves of the CuO/TiO_2 HNFs to 10 and 20 ppm formaldehyde and ethanol at the operating temperature of 200 and 300 °C, respectively.

Materials	Target gas	Concentration [ppm]	Temperature [°C]	Response time [s]	Recover time [s]
This work	нсно	10	200	1.4	24.8
NiO/SnO ₂ ³	нсно	10	200	50	80
MnO ₂ /ZnO ⁴	нсно	200	320	27	12
This work	C ₂ H ₅ OH	10	300	1.0	16
Sm ₂ O ₃ /ZnO ⁵	C ₂ H ₅ OH	500	300	15	420
SnO ₂ /ZnO ⁶	C ₂ H ₅ OH	100	400	96	400

 Table 1 Sensing performance of the heterostructure sensors to formaldehyde and ethanol gases.

References:

1 J. N. Deng, B.Yu, Z. Lou, L. L. Wang, R. Wang and T. Zhang, *Sens. Actuators B*, 2013, **184**, 21-26.

2 L. L. Wang, Z. Lou, T. Fei and T. Zhang, J. Mater. Chem., 2011, 21, 19331-19336.

3 Y. G. Zheng, J. Wang and P. J. Yao, Sens. Actuators B, 2011, 156, 723-730.

4 C. S. Xie, L. Q. Xiao, M. L. Hu, Z. K. Bai, X. P. Xia and D. W. Zeng, Sens. Actuators B, 2010, 145, 457-463.

5 M. Bagheri, N. F. Hamedani, A. R. Mahjoub, A. A. Khodadadi and Y. Mortazavi, *Sens. Actuators B*, 2014, **191**, 283-290.

6 S. Hemmati, A. A. Firooz, A. A. Khodadadi and Y. Mortazavi, *Sens. Actuators B*, 2011, **160**, 1298-1303.