Supplementary Information

Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal

Weiya Huang,^{a,b} Yi Zhu,^{a,*}Jinpeng Tang,^aXiang Yu,^a Xuelei Wang,^a Dan Li,^{c,*} Yuanming Zhang,^a

^aDepartment of Chemistry, Jinan University, Guangzhou, 510632, China; Tel: +86 20 85221264, Email: <u>tzhury@jnu.edu.cn</u> (Y. Zhu)

^bDepartment of Materials Science and Engineering, Taizhou University, Linhai, 317000, China;

^cEnvironmental Engineering, School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia, 6150, Australia; Tel: +61 08 9360 2569, Email: <u>l.li@murdoch.edu.au</u> (D. Li)

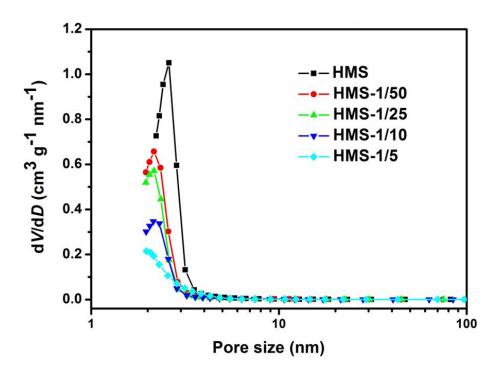


Fig. S1.Pore size distributions of HMS, HMS-1/50, HMS-1/25, HMS-1/10, and HMS-1/5.

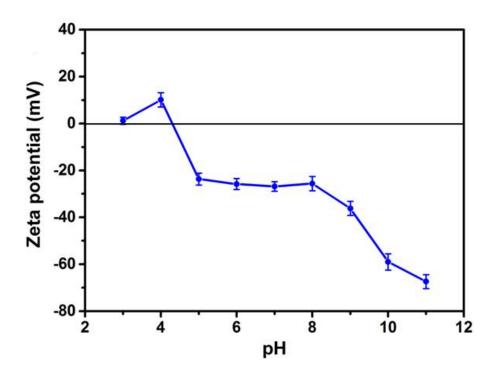


Fig. S2. Zeta potential of HMS-1/5 at pH ranging from 3 to 11.

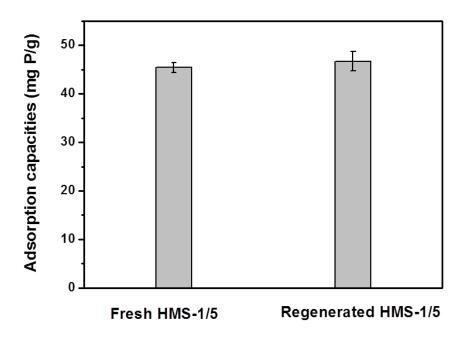


Fig. S3. Adsorption capacities of the fresh and regenerated HMS-1/5 samples in 50 mg P/L solution.