Supporting Information for

Graphene Enhanced Carbon-Coated Tin Dioxide Nanoparticles for Lithium-ion Secondary Battery

Zhongtao Li, Guiliang Wu, Dong Liu, Wenting Wu, Bo Jiang, JingtangZheng, Yanpeng Li, Junhua Li, Mingbo Wu* State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China *Corresponding author. Tel.:+86 532 8698 3452. E-mail address: wumb@upc.edu.cn

As shown in Fig. S1(a), no obviously strong peaks can be noticed in the XRD pattern of $SnO_2/C-50$ sample. However, just as reported in the paper, there are four sharp peaks in the sample of $SnO_2/C/GN-1.5$, suggesting its high crystallinity due to the introduction of GO.

Fig. S1. XRD patterns of (a) SnO₂/C-50, (b) C/GN and (c) graphite oxide

The FT-IR spectrum of SnO₂ is revealed in Fig. S2(a), a strong peak at 600 cm⁻¹ can be ascribed to Sn-O.

Fig. S2. FT-IR spectra of (a) SnO₂ and (b) graphite oxide

Fig. S3. SEM images of (a) SnO₂/C-50 and (b) SnO₂/C/GN-1.5

Fig. S4. TEM images of (a) SnO₂/GN, (c) C/GN and HRTEM image of (b) SnO₂/GN

The rate capability of $SnO_2/C/GN-1.5$ is evaluated by charging/discharging at various current densities from 100 to 800 mA g⁻¹ (Fig. S5(a)). It is obvious that the sample shows excellent cyclic capacity retention at each current density except 800 mA g⁻¹. Remarkably, at a current density of 400 mA g⁻¹, $SnO_2/C/GN-1.5$ deliveres a high capacity of 560 mAh g⁻¹. Importantly, after the high-current-density measurements, the capacity of the $SnO_2/C/GN-1.5$ at 100 mA g⁻¹ can recover to the initial value, indicating its high reversibility.

Fig. S5. (a) Rate performance of $SnO_2/C/GN-1.5$ and (b) the cyclic performance of SnO_2/GN , SnO_2 and C/GN