Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting information

Lithium Reaction Mechanism and High Rate Capability of VS₄-Graphene Nanocomposite for Lithium-ion Batteries Anode Materials

Xiaodong Xu,^{a+} Sookyung Jeong,^{a+} Chandra Sekhar Rout,^a Pilgun Oh,^a Minseong Ko,^a Hyejung Kim,^a Min Gyu Kim,^b Ruiguo Cao,^a Hyeon Suk Shin^{*a} and Jaephil Cho^{*a}

^a School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798 (Korea). E-mail: shin@unist.ac.kr, jpcho@unist.ac.kr
^b Beamline Research Division, Pohang Accelerator Laboratory, Pohang, 790-784 (Korea)

+ equally contributed

Functionalization of CNT

In the initial step, CNT (Sigma-Aldrich) was treated with a mixture of concentrated sulfuric acid and nitric acid (3:1, 95% and 60%) followed by ultrasonication at 50° C. Further, the product was diluted with water and kept for overnight. The obtained product was filtered and vacuum dried to get the functionalized CNT.

Synthesis of VS₄-10 wt% CNT composite

VS₄-10 wt% CNT composite was prepared by following the same procedure used for the synthesis of VS₄-rGO. At first, functionalized CNT solution (30 mg/mL) was prepared for the hydrothermal synthesis. Na₃VO₄ (0.552 g, 0.003 mol) and C₂H₅NS (1.125 g, 0.015 mol) were dissolved in 115 mL DI water. Then, 5 mL CNT solution was added. The mixture was stirred for 1 h at room temperature, and transferred to a 150 mL Teflon-lined stainless steel autoclave, sealed tightly and kept at 160 °C for 24 h. The carbon content of the as-prepared VS₄-CNT composite was 10 wt% according to elemental analysis.

Fig. S1 (A) Powder XRD pattern of the as-prepared VS_4 -rGO composite. (B) Structure of linear-chained VS_4 with alternating bonding and nonbonding contacts between the octa-coordinated vanadium centers.

Fig. S2 (A) SEM (B) TEM, and (C) HR-TEM of VS_4 in the as-prepared VS_4 -rGO composite.

Fig. S3 EDS mapping images of the VS₄-rGO composite.

Fig. S4 Capacity retention of rGO at a rate of 4 C (1 C=1000 mA g^{-1}).

Fig. S5 (A) SEM and (B) TEM images of the as-prepared VS₄-10 wt% CNT composites

Fig. S6 Cycle performance of VS4-10 wt% CNT composites at 4C and 23 °C