Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting information for

Phase Separation in Electrospun Nanofiber Depending on Crystallization Induced Selfassembly

Wei Huang, Mei-Jia Wang, Chang-Lei Liu, Jiao You, Si-Chong Chen,* Yu-Zhong Wang and

Ya Liu*

National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.

¹H-NMR spectra

PPDO precursor: ¹H-NMR (CDCl₃, 400 MHz)

Fig. S1 ¹H-NMR spectrum of PPDO precursor

PPDO-b-PEG multi-block copolymer: ¹H-NMR (CDCl₃, 400 MHz)

Fig. S2 ¹H-NMR spectrum of PPDO-b-PEG copolymer

FITR spectrum of PPDO-b-PEG copolymer

Fig. S3 The FTIR spectra of the PPDO-b-PEG multi-block copolymer

Selective etching of electrospun mat

The following equation was used to calculate the mass loss of the electrospun mat after

selective etching.

Mass loss (%) =
$$\frac{W_a - W_b}{W_a} \times 100\%$$
 (S1)

where w_a and w_b are the weight of the electrospinning mat before and after selective etching, respectively. The mass losses of the PLA/PPDO-b-PEG samples, calculated by weighting the samples before and after selectively removing PPDO-b-PEG, are 23.8 wt%, 23.4wt%, 25.5 wt%, 22.2wt%, respectively, and very close to the weight content of PPDO-b-PEG in spinning solution.

DMF content	Wa	Wb	mass loss
(%)	g	g	(%)
0	0.0336	0.0256	23.8
10	0.0368	0.0282	23.4
20	0.0276	0.0206	25.5
30	0.0406	0.0316	22.2

Table S1 mass loss of PLA/PPDO-b-PEG nanofiber after selective etching of PPDO-b-PEG