Stable ZnO@TiO₂ Core/Shell Nanorod Array Exposed High Energy

Facets for Self-cleaning Coating with Antireflective Property[†]

Ruosong Wang,^{ab}Huaqiao Tan,^a Zhao Zhao,^a Guoqiang Zhang,^a Laiwen Song,^a

Wenfei Dong,*band Zaicheng Sun*a

^aState Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine

Mechanics and Physics, Chinese Academy of Science, 3888 East Nanhu Road, Changchun 130033,

People's Republic of China. E-mail: <u>sunzc@ciomp.ac.cn</u>

^bSuzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, 88

Keling Road, Suzhou 215163, People's Republic of China. E-mail: wenfeidong@126.com

Figure S1 The energy-dispersive X-ray spectroscopy (EDX) of the products (A) TiO_2 -30 and (B) TiO_2 -15 in our experiments.

Figure S2 The X-ray diffraction (XRD) patterns of the products (A) TiO_2 -30 and (B) TiO_2 -15 in our experiments. Note that no obvious TiO_2 crystalline phase peaks can be observed due to the thin TiO_2 layer, and the broad band around 25° was owing to the amorphous glass substrate. When the amount of titanium (IV) isopropoxide reaches 450 µL, the TiO_2 shell is thick enough for XRD detection. (C) The peak at 25.2° can be observed in the XRD pattern, attributing to the anatase TiO_2 (101) diffraction.

Figure S3 The stability measurements of TiO₂-30 and ZnO nanorod array on FTO substrates in different pH water.

Figure S4 The degradation of RhB on bare FTO glass substrate under the same conditions mentioned in the text.