Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

ZIF-derived porous carbon: A conductive-agent-free supercapacitor

electrode material

Peng Zhang, Fang Sun, Zhigang Shen and Dapeng Cao*

State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China

*Corresponding author. Email: <u>caodp@mail.buct.edu.cn</u> <u>Tel:+8610-64443254</u>

Fig.S1 TEM image of Carbon-L-T, T= a)750, b)850, c)950, d)1000 °C

Fig.S2 SEM images of ZIF-derived porous carbons with different additional carbon sources: a) Carbon-F-950, b)Carbon-G-950, c) and d) Carbon-E-950

Fig.S3 TEM images of ZIF-derived porous carbons with different additional carbon sources a)

Carbon-F-950, b)Carbon-G-950, c) Carbon-E-950 and d) Carbon-Z-950

Fig S4 Deconvolution of the Raman spectrum of Carbon-L-T

Fig S5 Deconvolution of the Raman spectrum of ZIF-derived porous carbons with different additional carbon sources

1 ab. S1 The I_G/I_D of ZIF-derived polous carbo	I_{G}/I_{D} of ZIF-derived porous carbo	oons
---	---	------

Samples	Carbon-L-750	Carbon-L-850	Carbon-L-950	Carbon-L-1000
I _G /I _D	1.02	1.07	1.08	1.14
Samples	Carbon-F-950	Carbon-E-950	Carbon-G-950	Carbon-Z-950
I _G /I _D	1.05	1.08	1.08	1.08

Fig.S6 XPS spectra of as-prepared Carbon-L-T

XPS analysis (Fig.S6) approves the existence of nitrogen and oxygen atoms in the ZIF-derived porous carbons. The N-containing benzimidazole ligands in ZIF-7 framework are sources of nitrogen atoms. With the carbonization temperature increasing, the nitrogen content of Carbon-L-T was gradually decreased. The presence of oxygen can be attributed to moisture, atmospheric O₂, or CO₂ adsorbed on ZIF-derived carbon as well as the residual oxygen-containing groups from ZIF-7 (nitroxyl group) and glucose (hydroxyl group, carbonyl group). As N and O functional groups

are all electrochemically active to provide pseudocapacitance, it appears that both of them may participate in the pseudocapacitance reaction.¹

Fig.S7 FT-IR spectra of as-prepared Carbon-L-950 (black line) and Carbon-Z (red line) from 400 to 4000 cm⁻¹

Fig S7 shows the FT-IR spectra of Carbon-L-950 and Carbon-Z-950, which may provide more information about local structures. All samples share a stretching band at 3437cm⁻¹, which indicates the existence of the hydroxyl group and adsorbed water molecules. The C=O of carboxyl group in Carbon-L-950 with glucose and C=C of aromatic ring in ZIF-7 derived porous carbon are revealed by the band at 1640 cm⁻¹ and 1580 cm⁻¹, respectively. They are overlapped to become a broad absorption peak.² In the region $1300 \sim 1000$ cm⁻¹, the more complex bands may be assigned to C-O groups. ³ The result of FT-IR reveals that there are abundant of -OH and C=O groups on the surface of Carbon-L-950. Actually, O-containing functional groups improve the wettability of the carbon electrode with the electrolyte.^{4, 5} The same result can be proved well by their contact angle measurement (Fig S8).

Fig.S8 6M KOH solution droplet (2.5µL) on the surface of Carbon-Z-950 and Carbon-L-950

Fig.S9 CV curves at various scan rates and charge-discharge curves at different current densities of ZIF-derived porous carbons obtained by different additional carbon sources

Except for Eq.1, the specific capacitance (C, F g⁻¹) was also calculated from CV curves by using the following equation:

$$C = \frac{\int IdV}{2 \times s \times \Delta V \times m}$$

(Eq.S1)

where I (A) is the current, ΔV (V) refers to the potential change, s (mV s⁻¹) is scan rate, and m (g) is the mass of ZIF-derived porous carbons in the working electrode.

The specific capacitances of ZIF-derived porous carbons from CV and chargedischarge curves in this work are summarized in Tab S2.

Conditions	Current density (A/g)							Scan rate (mV/s)				
Samples	0.1	0.2	0.5	1	2	5	10	25	50	100	200	500
Carbon-L-750		127.6	76	53.4	34.8	14	6	85	31.8	21.25	15.28	8.54
Carbon-L-850		200.72	150.5	128.8	106	75	52	92.2	76.4	59.55	43.7	26.21
Carbon-L-950	228.1	226.2	222.9	218.6	212.8	195	178	185.2	167.3	142.5	109.43	63.37
Carbon-L-1000		135.4	115.8	110.2	102.4	88	74	101	90.2	76.4	59.4	36.08
Carbon-Z-950	202	182	174.5	163	146.4	113	80	126.8	103.8	78.7	55.53	31.34
Carbon-F-950	100.9	99.2	92.1	85.2	76.8	62	50	78.2	68.6	57.45	44.9	28.41
Carbon-E-950	152	144.8	133.5	123	116.4	89	68	106.4	91.6	73.45	52.05	29.19
Carbon-G-950	238	198	185	167	164	146	116	162.2	134.5	102.25	70.48	38.22

Tab.S2 Specific capacitance of ZIF-derived porous carbons at different current density and scan rate (F/g)

- 1. L. Hou, L. Lian, D. Li, G. Pang, J. Li, X. Zhang, S. Xiong and C. Yuan, *Carbon*, 2013, **64**, 141-149.
- 2. S. Mo, Z. Sun, X. Huang, W. Zou, J. Chen and D. Yuan, *Synth. Met.*, 2012, **162**, 85-88.
- 3. Q. Wang, W. Xia, W. Guo, L. An, D. Xia and R. Zou, *Chem Asian J*, 2013, **8**, 1879-1885.
- 4. Q. Li, R. Jiang, Y. Dou, Z. Wu, T. Huang, D. Feng, J. Yang, A. Yu and D. Zhao, *Carbon*, 2011, **49**, 1248-1257.
- 5. D. Hulicova Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z. H. Zhu and G. Q. Lu, *Advanced Functional Materials*, 2009, **19**, 1800-1809.