Supporting Information

A shape-deformable and thermally-stable solid-state electrolyte based on plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries

Se-Hee Kim, Keun-Ho Choi, Sung-Ju Cho, Ju-Sung Park, Kuk Young Cho,

Chang Kee Lee, Sang Bong Lee, Jin Kie Shim, Sang-Young Lee*

Figure S1. Rheological behavior of PC-CPE and carbonate-based liquid electrolyte (1M LiPF₆ in EC/DMC = 1/1 v/v), wherein viscosity is plotted as a function of shear rate.

Figure S2. Linear sweep voltammograms (LSV) of PC-CPE at a scan rate of 1.0 mV s⁻¹.

Figure S3. Variation in AC impedance spectra (1st \rightarrow 40th cycle) of cells assembled with PC-CPE.

Figure S4. Variation in AC impedance spectra of cells assembled with PC-CPE after exposure to thermal shock (= 130 °C/0.5 h).

Figure S1. Rheological behavior of PC-CPE and carbonate-based liquid electrolyte (1M LiPF_6 in EC/DMC = 1/1 v/v), wherein viscosity is plotted as a function of shear rate.

Figure S2. Linear sweep voltammograms (LSV) of PC-CPE at a scan rate of 1.0 mV s⁻¹.

Figure S3. Variation in AC impedance spectra ($1^{st} \rightarrow 40^{th}$ cycle) of cells assembled with PC-CPE.

Figure S4. Variation in AC impedance spectra of cells assembled with PC-CPE after exposure to thermal shock (= 130 °C/0.5 h).