Supporting information for

Muon studies of Li⁺ diffusion in LiFePO₄ nanoparticles of different polymorphs

Thomas Ashton,^a Josefa Vidal Laveda,^a Donald A. MacLaren,^b Peter J. Baker,^c Adrian Porch,^d Martin-Owen Jones^c and Serena A. Corr*^a

^a School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom.

^b School of Physics and Astronomy, University of Glasogw G12 8QQ, United Kingdom

^c ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom

^d Centre for High Frequency Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom

Figure S1: XRD patterns of LiFePO₄ products obtained using (a) ethylene glycol as a solvent and (b) EMI-TFMS as a solvent for increasing reaction temperatures. A mixture of α - and β -LiFePO₄ is always observed for the ethylene glycol reactions, while no β -phase is detected in the case of the ionic liquid where temperatures above 250°C are required to obtain the products.