Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Figure S1: ¹H NMR spectra of (a) DES-ReHy12 and (b) DES-ReHy13.

δ (ppm)

Figure S2: Solid ¹³C NMR spectra of the product obtained after polycondensation of (a) DES-ReHy12 and (b) DES-ReHy13. The most interesting signals were those centered at about 53 ppm and 31 ppm (the latter, very broad and with a shoulder at 26 ppm), which are typically assigned to methylene ether and methylene groups (e.g., CH_2 –O– CH_2 and CH_2 bridges, respectively). Different types of CH_2 bridges can be distinguished depending on the chemical shift.¹ Thus, the most common 4–4' methylene bridge has been typically assigned to signals at 30–38 ppm, and the less common 2–4' methylene bridges to signals at 22–30 ppm. The signal at 122 ppm was also interesting in terms of condensation since it corresponds to aromatic carbons of mono and disubstituted resorcinols bearing CH_2 groups in all ortho positions relative to the phenolic OHs. Non-substituted aromatic CH groups in meta positions appeared at 132 ppm.

Figure S3: Fourier transform infrared (FTIR) spectra of the product obtained after polycondensation of DES-ReHy12 (black line) and DES-ReHy13 (grey line). The bands at 2925 and 1465 cm⁻¹ in the FTIR spectra were assigned to methylene groups (associated with the CH₂ stretching and bending vibrations), whereas the broad band at 3388 cm⁻¹ included the aromatic OH groups of resorcinol and hydroxypyridine.² The band at 1604 cm⁻¹ came from aromatic ring stretches, whereas medium to weak absorption bands at 1230 and 1091 cm⁻¹ corresponded to the C–O stretch and deformation of benzyl ether groups (methylene ether groups), respectively. The absorption band centered 1303 cm⁻¹ was attributed to C–N single bond stretching vibrations.³

	C1s	N1s	01s
	284.8 (60)	298.5 (24)	
C _{ReHy12} @800	286.2 (31)	400.3 (30)	531.4 (28)
-	288.3 (9)	401.6 (39)	532.8 (72)
		403.0 (7)	
	284.8 (63)	298.5 (33)	
С _{кену12} @700	286.2 (27)	400.3 (25)	531.2 (33)
	288.2 (10)	401.2 (33)	532.8 (67)
		402.7 (9)	
	284.8 (67)	298.7 (42)	
С _{кену12} @600	286.2 (25)	400.5 (36)	531.2 (33)
	288.2 (8)	401.4 (12)	532.9 (67)
		402.5 (10)	
	284.8 (61)	298.5 (41)	
С _{кену12} @500	286.1 (30)	400.2 (32)	531.2 (34)
	288.0 (9)	401.3 (18)	533.0 (66)
		402.8 (9)	
	284.8 (68)	398.5 (29)	
C _{ReHy13} @800	286.2 (24)	400.5 (30)	531.1 (34)
	288.1 (8)	401.5 (34)	532.6 (66)
		402.8 (7)	
С _{кеНу13} @700	284.8 (67)	398.5 (34)	
	286.2 (24)	400.6 (41)	531.2 (32)
	288.0 (9)	402.5 (16)	532.7 (68)
		402.6 (9)	
С _{кеНу13} @600	284.8 (71)	398.6 (36)	
	286.2 (22)	400.5 (37)	531.1 (27)
	288.1 (7)	401.5 (18)	532.6 (73)
		403.1 (10)	
	284.8 (67)	398.5 (42)	
С _{кеНу13} @500	286.2 (26)	400.3 (34)	531.1 (33)
	288.2 (7)	401.3 (16)	532.6 (77)
		402.6 (8)	

Table S1: Binding energies of C1s, N1s and O1s in XPS spectra.

¹ (a) R. L. Ward and R. W. Pekala, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1990, 31, 167–169; (b) I. L. Moudrakovski, C. I. Ratcliffe, J. A. Ripmeester, L.-Q. Wang, G. J. Exarhos, T. F. Baumann and J. H. Satcher, J. Phys. Chem. B, 2005, 109, 11215– 11222; (c) S. Mulik, C. Sotiriou-Leventis and N. Leventis, Chem. Mater., 2007, 19, 6138– 6144.

² Y. Chen, Z. Chen, S. Xiao and H. Liu, Thermochim. Acta, 2008, 476, 39–43.

 ³ (a) N. Liu, L. Yin, C. Wang, L. Zhang, N. Lun, D. Xiang, Y. Qi and R. Gao, Carbon, 2010, 48, 3579–3591; (b) Y. Qiu and L. Gao, Chem. Commun., 2003, 2378–2379; (c) D. C. Nesting and J. V. Badding, Chem. Mater., 1996, 8, 1535.