Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

ZnO Quantum Dots/Graphene Nanocomposites by Atomic Layer Deposition with High Lithium Storage Capacity

Xiang Sun,^a Changgong Zhou,^b Ming Xie,^{c,*} Hongtao Sun,^a Tao Hu,^a Fengyuan Lu,^a

Spencer M. Scott,^a Steven M. George,^c Jie Lian^{a,*}

¹Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic

Institute, 110 8th Street Troy, NY 12180, United States

² Natural Science Department, Lawrence Technological University, Southfield, MI 48075, United States

³ Department of Chemistry and Biochemistry and Department of Mechanical Engineering,

University of Colorado at Boulder, Boulder, Colorado 80309, United States

		\$/kg 3 month	Theoretical	
Metal	Anode	average	Capacity (mAh/g)	\$/Ah
Al	Al*	2.13	993	0.0021
Zn	ZnO	2.21	978	0.0022
Mn	MnO_2	3.84	1232	0.0031
Mn	MnO	3.84	755	0.0051
Fe	Fe ₂ O ₃	5.20	1005	0.0052
Fe	Fe ₃ O ₄	5.20	925	0.0056
Cu	CuO	8.26	674	0.012
Mo	MoO_3	24.80	1117	0.022
Ni	NiO	18.38	718	0.026
Co	Co_3O_4	26.00	890	0.029
Mo	MoO_2	24.80	830	0.030
Sn	SnO_2	24.93	790	0.0316
Ti	TiO ₂ **	11.16	330	0.0338
rices obtaine	ed from MetalPrice	es.com, Winter 2013		
l metal alloy	s with Li to form	LiAl. Al ₂ O ₃ is inactiv	ve to Li ⁺ .	

Table S1 \$/Ah for the common metal oxides estimated based on the price of their metalelements (\$/MT) and their theoretical capacity (Ah/kg).

Schematic of ALD reaction

Figure S1 Cycling performance of 5 cycle ALD Al_2O_3 on graphene at 100 mA/g

Specific capacitance calculation of ZnO

We deposited 5 cycles of ALD Al_2O_3 on graphene to mimic the ZnO coverage at the defects and edge plane of graphene. Therefore, only intercalation between graphene layers will contribute to the capacitance of this composite. Figure S2 shows that the stable capacity of Al_2O_3 -G after 50 cycles is only 258 mAh g⁻¹.

The capacity contribution of ZnO in the composite can be extracted after considering the real contribution from graphene (capacity of Al_2O_3 -G), as following:

$$C_{Zn0} = \frac{C_{total} - C_{Al_2O_3 - G} \times W_{Al_2O_3 - G}}{W_{Zn0}}$$

Where, C_{Zn0} , C_{total} , $C_{Al_2O_3-G}$ are discharge specific capacitance of ZnO, ZnO-G composite, and ALD Al₂O₃-G, respectively. $W_{Al_2O_3-G}$ and W_{ZnO} are mass percentage of graphene and

ZnO in the composites.

Therefore, for 15 ALD ZnO-G composite,

$$C_{ZnO} = \frac{C_{total} - C_{Al_2O_3 - G} \times 0.573}{0.427}$$

and for 30 ALD ZnO-G composite,

$$C_{ZnO} = \frac{C_{total} - C_{Al_2O_3 - G} \times 0.318}{0.682}$$