Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Manipulation of Cuprous Oxide Surfaces for Improving Their Photocatalytic Activity

Sanghwa Yoon^a, Misung Kim^b, In-Soo Kim^c, Jae-Hong Lim^{*b}and Bongyoung Yoo^{*a}

^aDepartment of Materials Engineering, Hanyang University, Ansan-si, Gyeonggi-do 426-791, Republic of Korea

 ^bElectrochemistry Research Group, Materials Processing Division, Korea Institute of Materials Science, Changwon-si, Gyeongnam 641-831, Republic of Korea
^cDepartment of Metallurgical Engineering, Dong-A University, Busan-si, 426-791, Republic of Korea

FigureS1. XRD patterns of the Cu₂O films deposited at bath pH values of 8.3 and 12.

Figure S2. XRD patterns of the 2D and 3D Cu₂O films deposited at pH 8.3 and pH 12.

Figure S3. Raman spectra of the 2D and 3D Cu_2O films deposited at (a) pH 12 and (b) pH 8.3. (c) PL spectra of the 2D and 3D Cu_2O films and (d) the optical band gap of the Cu_2O films deposited at pH 12 using a template of PS beads 1000 nm in diameter.

Figure S4. Reflectance spectra of the 2D and 3D Cu_2O films (deposited at pH 12) over wavelengths ranging from 350 to 1200 nm.

Figure S5. Gas chromatograph data demonstrating H_2 detection. The peak at 4.5 min is associated with H_2 gas.

Figure S6. SEM images of 2D Cu₂O films (a) before PEC and (b) after PEC for 450s, and 3D Cu₂O films (c) before PEC and (d) after PEC at -0.6 V (*vs.* Ag/AgCl). The scalebar is 5 μ m.

Figure S7. XRD patterns of (a) the 2D Cu_2O film before PEC measurement, (b) the 2D Cu_2O film after PEC measurement for 1 hr, and (c) 3D Cu_2O film after PEC measurement for 1 hr.