Supporting Information

Guest-modulation of the mechanical behavior of flexible porous Metal Organic Frameworks

Qintian Ma,^{*a*} Qingyuan Yang,^{**a*} Aziz Ghoufi,^{*b*} Ke Yang, ^{*a*} Ming Lei^{*c*}, Gérard Férey,^{*d*} Chongli Zhong^{*a*} and Guillaume Maurin,^{*e**}

^{*a*} State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, P.O. Box 100 Beijing 100029, China.

E-mail : <u>qyyang@mail.buct.edu.cn</u>

^b Institut de Physique de Rennes, CNRS-University of Rennes 1, UMR 6251, 35042 Rennes, France.

^c State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.

^{*d*} Institut Lavoisier Versailles, Université de Versailles St-Quentin, 45, avenue des France, 78035 Versailles cedex, France.

^e Institut Charles Gerhardt Montpellier, Université Montpellier 2, 34095 Montpellier cedex 05, France. Fax: +33 4 67 14 42 90; Tel: +33 4 67 14 33 07.

E-mail: guillaume.maurin@univ-montp2.fr

1. Flexible force field parameter for water molecule

Water molecule was described by the TIP4P-2005 model as reported by Abascal and Vega.¹ In this four-site model, a single LJ term is centered only on the oxygen nucleus and electrostatic charges at the hydrogens while the negative charge is placed in a site M along the bisector of the H–O–H angle at 0.1546 Å from the oxygen and coplanar with the oxygen and hydrogens. The H–O bond length and the H–O–H bond angle are fixed at 0.9572 Å and 104.52° respectively. The LJ cross interaction parameters including adsorbate/adsorbate and adsorbate/MOF were determined by the Lorentz-Berthelot mixing rule except for the interaction between the oxygen atoms of the water molecule and the o_c of the MIL-53(Cr) framework where the LJ parameters have been adjusted by our own to describe the stability of the MIL-53(Cr) NP structure loaded with high concentration of water accurately. The corresponding atomic partial charges and potential parameters are given in Table S1.

Table S1 Atomic partial charges and non-bonded potential parameters used for water. The LJ
parameters for the water/o_c interactions are also reported.

Atomic partial charges						
Angle type	<i>q (e)</i>					
H_H ₂ O	0.5564					
M_H ₂ O	-1.1128					
Lennard Jones potential						
Atom type	σ_{ii} (Å)	ε_{ii} (kJ·mol ⁻¹)				
O_H ₂ O	3.15890	0.775474				
o_H ₂ O – o_c	3.13945	0.762708				

2. Unit cell parameters of the framework

Table *S2* Simulated unit cell parameters for the different forms of MIL-53(Cr) under the external applied pressure (P1 symmetry). The α and γ angles for all the structures listed in this table are 90.00°.

P (MPa)	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β (°)	$V(Å^3)$		
MIL-53(Cr) ^a							
0.1	17.368	12.562	6.684	90.00	1458		
53.5	19.273	7.914	6.583	95.00	1000		
300	19.324	7.397	6.556	96.23	931		
MIL-53(Cr) loaded with 1 $H_2O/u.c.^b$							
0.1	17.594	12.205	6.672	90.00	1433		
21	19.229	8.107	6.580	94.85	1022		
300	19.274	7.622	6.546	96.10	956		
MIL-53(Cr) loaded with 4 $H_2O/u.c.^b$							
0.1	19.169	8.259	6.541	95.50	1031		
MIL-53(Cr) loaded with 1 CH ₃ OH/u.c. ^b							
0.1	17.858	11.751	6.665	90.00	1399		
7	18.929	9.420	6.636	90.23	1183		
300	19.227	7.965	6.543	95.18	998		
MIL-53(Cr) loaded with 3 CH ₃ OH/u.c. ^b							
0.1	18.976	9.279	6.618	90.31	1165		
MIL-53(Cr) loaded with 0.5 n-hexane/u.c. ^b							
0.1	17.737	11.961	6.672	90.00	1415		
10	17.940	11.602	6.666	90.00	1387		
300	19.147	8.347	6.548	94.29	1044		
MIL-53(Cr) loaded with 1 n-hexane /u.c. ^b							
0.1	18.391	10.727	6.653	90.00	1312		

^{*a*} Our previous work.²

^b This work.

References

1 J. Abascal, C. Vega, J. Chem. Phys., 2005, 123, 234505.

2 Q. Ma, Q. Yang, A. Ghoufi, G. Férey, C. Zhong, G. Maurin, Dalton Trans., 2012, 41, 3915.