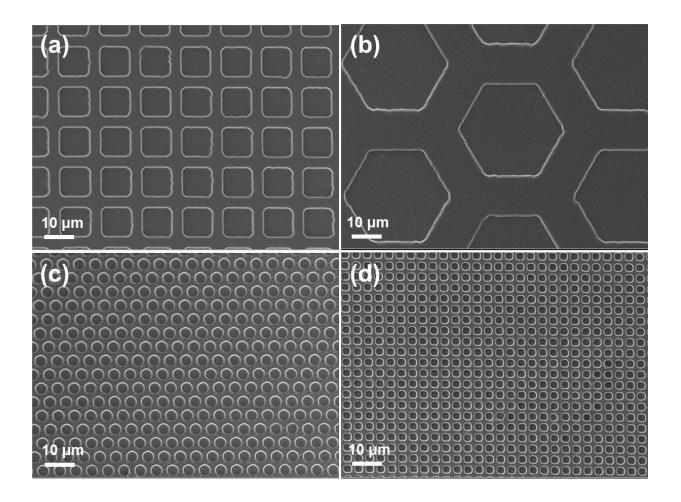
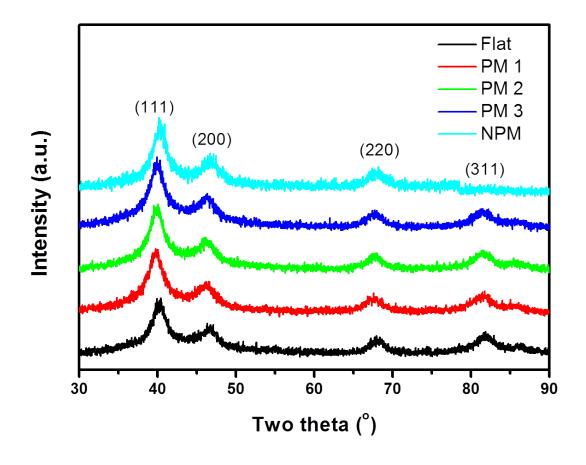
Supporting Information

Facile Preparation Method of Surface Patterned Polymer Electrolyte Membranes for Fuel Cell Applications


Jong Kwan Koh[‡], Yukwon Jeon[‡], Yong il Cho, Jong Hak Kim^{*}, Yong Gun Shul^{*}

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea


[‡] These authors contributed equally to this work.

* Corresponding Author: E-mail: jonghak@yonsei.ac.kr (Prof. J.H. Kim), shulyg@yonsei.ac.kr (Prof. Y.G. Shul),

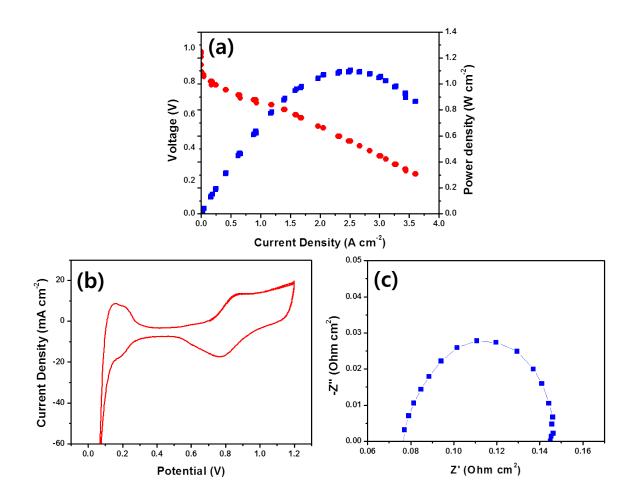

Figure S1. SEM surface images of Nafion membranes with different pattern shapes fabricated using various patterned PDMS molds. (a) Square pattern, (b) hexagonal pattern, (c) circle pattern, and (d) rounded rectangle pattern.

Figure S2. XRD patterns of the catalyst layers sprayed on the Nafion membranes before performance testing.

Figure S3. (a) polarization (I-V) curves and power density curves, (b) CV curves and (c) Nyquist plots of single PEM fuel cell MEAs fabricated with the commercial Nafion 212 membrane at 75 $^{\circ}$ C 100 % RH.

Table S1. Membrane properties and performance of of single PEM fuel cell MEAs fabricatedwith commercial Nafion 212 membrane at 75 °C 100 % RH.

	Commercial Nation 212
Pattern size (µm) (width/space/height)	-
Specific membrane surface area	1
Thickness (µm)	50
ECSA (m ² /g)	42.3
Current density at 0.6 V (A/cm ²)	1.58
Maximum power density (W/cm ²)	0.79
Ohmic resistance (Ω cm ²)	0.08
Charge transfer resistance ($\Omega \text{ cm}^2$)	0.07