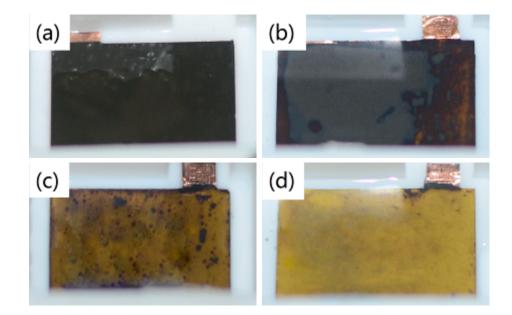
Supporting Information

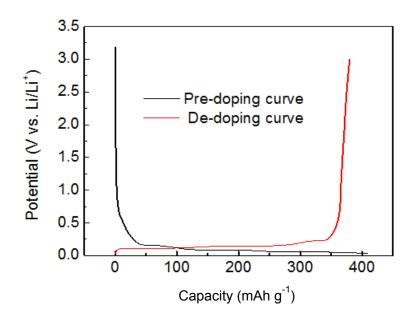
A Fast and Efficient Pre-doping Approach to High Energy Density Lithium-Ion Hybrid Capacitors

Minho Kim^{§ab}, Fan Xu^{§c}, Jin Hong Lee^a, Cheolsoo Jung^c, Soon Man Hong^{ab}, Q. M. Zhang^{d*}, Chong Min Koo^{ab*}


^aCenter for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 136-791

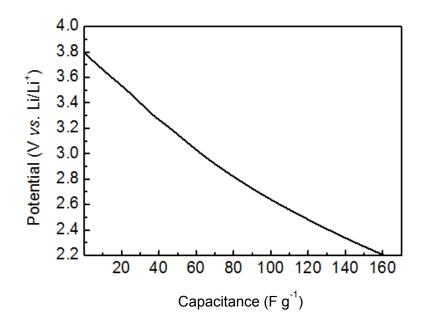
; E-mail: koo@kist.re.kr

^bNanomaterials Science and Engineering, University of Science and Technology, 217 Gajungro, 176 Gajung-dong, Yuseong-Gu, Daejeon, Korea 305-333

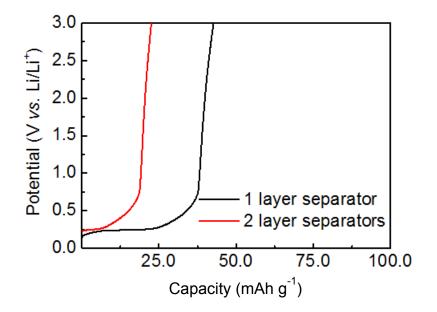

^cDepartment of Chemical Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, Republic of Korea 130-743 ^dDepartment of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, USA PA 16802 ; *E-mail: qxz1@psu.edu*

Supporting Figure S1

IS pre-doped graphite electrodes at various doping times: (a) 4, (b) 15, (c) 30, and (d) 60 min.


Supporting Figure S2

Pre-doping and de-doping curves of graphite electrodes via EC method at the current rate of 0.03 C.


Supporting Figure S3

The AC/Li half-cell was charged from its OCV to 3.8 V and discharged to 2.2 V on 0.2 C condition. The capacitance of the AC electrode was 160 F g-1.

Discharge curves of AC/Li half-cell at 0.2C

Supporting Figure S4

De-doping curves of the ESC pre-doped graphite with one layer or two layers of separator.