Article to Materials Chemistry A

Supplementary Information

Transparent and Flexible Organic Semiconductor Nanofilms with Enhanced Thermoelectric Efficiency

Seung Hwan Lee^a, Hongkwan Park^a, Soyeon Kim^a, Woohyun Son^a, In Woo Cheong^{b,*}, and Jung Hyun Kim^{a,*}

^aDepartment of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120–749, South Korea. Email:jayhkim@yonsei.ac.kr, Tel: +82-2-2123-7633, Fax: +82-2-312-0305

^bDepartment of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702–701, South Korea. Email:inwoo@knu.ac.kr

Experimental Section

Characterization

Electrical conductivity (σ) of the PEDOT:PSS film on a glass substrate was measured by the van der Pauw method with a four-point contact configuration on a Keithley 2400 sourcemeasure unit equipped with a 2182 nano-voltameter and a 7001 switch system. Prior to the measurement, four gold electrodes (2×2 mm) were patterned onto the PEDOT:PSS film to ensure stable ohmic contacts. The Seebeck coefficient was measured on a temperature gradient setup built in-house from a Peltier cooler and a Peltier heater. The Peltier devices were controlled by a Keithley 2400 source-measure unit and a Keithley 2200-30-5 power supply. A thermocouple (TC) was placed on each of the hot and the cold region's gold electrode of the film samples at a separation of 1 cm. The temperature difference between the TCs was fixed at 5 °C. Accordingly, thermoelectric efficiency values were calculated from the relationship $ZT = \sigma S^2 T/\kappa$ where *S* stands for the Seebeck coefficient (also called the thermopower), σ and κ are the electrical and thermal conductivities, respectively, and T is the absolute temperature. Here, a product of electrical conductivity and the square of Seebeck coefficient is referred to as the power factor (σS^2). The average thickness of the films was measured on an AS500 (KLA-Tencor Co.; USA) alpha-step surface profiler. To confirm the component ratio of PEDOT to PSS and chemical compositions on the film surface, X-ray photoelectron spectra (XPS) were acquired on a Thermo K-Alpha XPS (Thermo Fisher Scientific, West Palm Beach, FL, USA) instrument. The Raman spectra were acquired on a LabRAM ARAMIS (HORIBA Jobin Yvon, Tokyo, Japan) spectrometer with 514.5 nm (green) Ar laser excitation in the range 850–1700 cm⁻¹ at room temperature. The ultravioletvisible-near-infrared (UV-Vis-NIR) absorption spectra were acquired on a Lambda 750 (PerkinElmer, USA) at 300 - 1400 nm to investigate the doping/dedoping states of the film as a function of hydrazine concentration. The film optical transmission was measured on an UV-1601PC UV-Vis spectrophotometer (Shimadzu, Japan). The carrier concentration and carrier mobility were measured on a HMS-3000 Hall measurement system (Ecopia, Republic of Korea). The thermal diffusivity (λ) was measured on an LFA 457 MicroFlash system (Netzsch, Germany). The specific heat capacity (C_p) was evaluated on a DSC 200 F3differential scanning calorimeter (Netzsch, Germany). The thermal conductivity (κ) was calculated from the relationship $\kappa = \lambda \times C_{p} \times \rho$, where ρ is the density.¹

1. Thermal conductivity

Samples	Density (g/cm ³)	Specific heat cap acity (J/g·K)	Thermal diffusivity (mm ² /s)	Thermal Con ductivity (W/m·K)
DTP-100	1.357	1.340	0.209	0.381
DDTP-0 M	1.270	1.190	0.198	0.299
DDTP-1.1× 10 ⁻⁴ M	1.220	1.210	0.210	0.310

Table S1. Thermal conductivity for different PEDOT:PSS samples and other parameters used

 for the calculation of thermal conductivity

2. Hall measurements

Fig S1. Variation of carrier concentration (*n*) and mobility (μ) of hydrazine/DMSO-dedoped PEDOT:PSS (DDTP) films as a function of hydrazine concentration. The electrical conductiv ity (σ) is proportional to $n \times \mu$.

3. Reduction mechanism

The dedoping process with hydrazine/DMSO can be divided into two steps according to the role of hydrazine; the neutralization of PSS and reduction of PEDOT, as shown in (a) Route 1 and (b) Route 2, respectively. In Route 1, the dedoping of PEDOT occurs via two steps: the reversible reaction of hydrazine (1) and combination between $-SO_3H$ and $N_2H_5^+$ via deprotonation (2). This step neutralizes the doped PEDOT by reducing the coulomb interaction between PEDOT and PSS. In Route 2, 'over-dedoping' of PEDOT occurs by reduction of ethylenedioxy part in EDOT units. Hydrazine first attacks the carbon of ethylenedioxy part, and which opens the ring of ethylenedioxide (*Int*₁). Second, one hydrogen atom transfers from the hydrazine group to the negatively charged oxygen and the hydrazino group (-HNNH₂) attacks the thiophene ring to form *Int*₂. Another hydrogen atom of *Int*₃ and *Int*₄. This gives a water molecule (H₂O) or a water molecule and a cis-diazene (- N_2H_2), and the two deoxygenated product.²⁻⁴

Fig S2. Dedoping and reduction mechanism of PEDOT:PSS films treated by hydrazine/DMS O (i.e. DDTP films): (a) dedoping of PEDOT:PSS film by the neutralization of PSS and (b) r eduction of PEDOT molecules with excess amount of hydrazine as a reducing agent.

4. X-ray photoelectron spectra (XPS)

Fig S3. XPS spectra of the PEDOT:PSS films treated by hydrazine/DMSO with different hydrazine concentration (i.e. DDTP films): (a) C 1s and (b) O 1s XPS peaks.

References

- 1. M. Boutinguiza, F. Lusquiños, J. Pou, R. Soto, F. Quintero, R. Comesaña, Opt. Laser. Eng. 2012, **50**, 727-730.
- 2. W. Chen, L. Yan, P. Bangal, J. Phys. Chem. C. 2010, 114, 19885-19890.
- 3. X. Gao, J. Jang, S.J. Nagase, J. Phys. Chem. C. 2009, 114, 832-842.
- 4. S. Pei, H.-M Cheng, *Carbon* 2012, **50**, 3210-3228.