Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting information

Hydrogen-Treated Hematite Nanostructures with Low Onset Potential for Highly Efficient Solar Water Oxidation

Ming Li, Jiujun Deng, Aiwu Pu, Pingping Zhang, Hui Zhang, Jing Gao, Yuanyuan

Hao, Jun Zhong* and Xuhui Sun *

Figure S1: Illustration of the experimental setup for H_2 treatment.

Figure S2: SEM image of the cross section of H_2 -treated (8 mmol NaBH₄) hematite nanostructures.

Figure S3: XRD spectra of hematite nanostructures before and after H_2 treatment.

Figure S4: The integrated photocurrent of H₂-treated (8 mmol NaBH₄) hematite based on the IPCE data (320 nm to 650nm) at 1.23 V vs. RHE. The photocurrent density was calculated by integrating the IPCE spectra with a standard AM 1.5G solar spectrum (ASTMG-173-03), using the following equation (Ref: Nano Lett., 2011, 11, 3503):

$$I = \int_{320}^{650} \frac{1}{1240} \lambda IPCE(\lambda) E(\lambda) d(\lambda)$$

where $E(\lambda)$ is the solar spectral irradiance at a specific wavelength (λ) and IPCE(λ) is the obtained IPCE profile as a function of wavelengths (λ) at 1.23 V vs. RHE. The calculated photocurrents are 2.03 mA cm⁻² at 1.23 V vs. RHE.

Figure S5: Photochemical stability curves for pristine and H₂-treated (8 mmol NaBH₄) hematite electrodes collected at 1.23 V vs. RHE.

Figure S6: Fe 2p XPS spectra of pristine and H₂-treated (8 mmol NaBH₄) hematite nanostructures.