Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Forming a p-n Heterojunction on GaP Photocathodes for

H₂ Production Providing an Open-Circuit Voltage of 710 mV

Mauro Malizia, Brian Seger, Ib Chorkendorff, and Peter C. K. Vesborg*

CINF, Department of Physics, Technical University of Denmark, DTU

Building 311, Fysikvej, DK-2800 Kgs. Lyngby, Denmark

E-mail: peter.vesborg@fysik.dtu.dk

Electronic Supplementary Information

UV-Vis Spectroscopy

The absorption spectra for TiO_2 and Nb_2O_5 films are shown in Figure S1. A considerably high absorption in the visible light region is observed for the Nb_2O_5 film. This is most likely due to the presence of Nb in metallic phase, not completely oxidized during the deposition. For TiO_2 and Nb_2O_5 the bandgaps are found to be 3.1 eV and 3.5 eV, respectively, as depicted in the inset of Figure S1.

Figure S1: Absorption spectra for TiO₂ and Nb₂O₅ sputtered on quartz glass. Inset: Tauc plot for TiO₂ and Nb₂O₅.

X-ray Diffraction

The XRD data of both the TiO₂ and Nb₂O₅ films is shown in Figure S2. The peaks of the TiO₂ at 25.5°, 38.6°, 56.2°, and 63.8° correspond to anatase. The peak at 32° and 52°, and 67° are undefined peaks, but may be related to the underlying Si support. The extremely broad peaks of the Nb₂O₅ sample give little useful information. However without clear sharp peaks, it is evident that the Nb₂O₅ has, at most, a minimal degree of crystallinity.

Figure S2: Cu K α XRD peaks of TiO₂ and Nb₂O₅ sputtered on Si substrate showing the anatase structure of TiO₂ and the amorphous phase of Nb₂O₅.

Electrochemical Impedance Spectroscopy

The positioning of flat band potential of GaP, TiO_2 and Nb_2O_5 was determined by electrochemical impedance spectroscopy (EIS) using the Mott-Schottky relationship¹ expressed in the following Equation

$$\frac{1}{C^{-2}} = \frac{2}{e\varepsilon_r \varepsilon_0 A^2 N} \left(E - E_{FB} - \frac{k_B T}{e} \right)$$
(1)

where C is the space-charge region capacitance, e is the electronic charge, ε_r is the relative permittivity, ε_0 is the vacuum permittivity, A is the electrode surface area, N is the number of donors or acceptors, E is the applied voltage, E_{FB} is the flat band potential, k_B is Boltzmann's constant, and T is the temperature. Some assumption are made in the derivation of the Mott-Schottky equation, thus a standard nonlinear relationship between C⁻² and E may not be observed if such assumptions are not fulfilled (*i.e.* space-charge region capacitance << Helmholtz layer capacitance, absence of surface states, frequency-independence of the dielectric constant ε_r , homogeneous spatial distribution of donors/acceptors, flat surface).^{1,2}

Figure S3: Mott-Schottky plot for (a) p-GaP, (b) n-TiO₂ and (c) n-Nb₂O₅ on Si substrate, measured using a modulation frequency of 1 kHz in 1 M HClO₄ in dark conditions.

The Mott-Schottky plot for p-GaP is shown in Figure S3a. By using Equation 1 and ε_r =11.1,³ the flat band potential was found to be E_{FB} =0.92 V_{RHE} and the acceptors concentration was found to be N_A =5.6·10¹⁷ cm⁻³. Mott-Schottky plots of the sputtered TiO₂ and Nb₂O₅ films deposited on Si are shown in Figures S3b and S3c. For TiO₂, ε_r is 75,⁴ while E_{FB} was calculated to be -0.02 V_{RHE} . N_D is dependent upon the surface area, and SEM images have shown that the sputtered TiO₂ is quite rough.⁵ If only the geometric area is taken into consideration, N_D would be 5·10²⁰ cm⁻³. However, it should be noted that using a surface roughness of 3.2 or 10 would correspond to an N_D

of $5 \cdot 10^{19}$ cm⁻³ or $5 \cdot 10^{18}$ cm⁻³, respectively. Determining the exact surface roughness and the effect of surface roughness on the Mott-Schottky impedance data is beyond the scope of this work. However, we can reasonably estimate that the actual donor density will be somewhere between $5 \cdot 10^{18}$ cm⁻³ and $5 \cdot 10^{20}$.

For Nb₂O₅ (ε_r =42),⁵ E_{FB} was calculated to be 0.12 V_{RHE}. Again, the rough surface of the sputtered Nb₂O₅ made determining an effective surface area difficult. Using the same approach of TiO₂, we could estimate the N_D of Nb₂O₅ to be somewhere between 4·10²⁰ cm⁻³ and 4·10¹⁸ cm⁻³. Both metal oxides are n-type and characterized by a high donor density. The high donor density often introduces error for the determination of E_{FB} and carrier concentration due to the magnitude of the capacitance of the Helmholtz layer. Therefore, this can result in nonlinearity of the Mott-Schottky plot.⁶

We found an apparent E_{FB} for Nb₂O₅ that is more positive than the one of TiO₂, although the majority of studies on Nb₂O₅ place the value more negative than the one of TiO₂.⁷

The carrier density found in our Nb_2O_5 film is comparable to the carrier density reported for similar amorphous thin films, which indicates a highly disordered structure and probably a considerable presence of defects.⁸

References

- (1) Cardon, F., Gomes, W. P., J. Phys. D: Appl. Phys., 1978, 11, L63-L67
- (2) De Gryse, R.; Gomes, W. P.; Cardon, F., Vennik, J., J. Electrochem. Soc., 1975, 122, 711-712
- (3) Samara, G. A. Phys. Rev. B, 1983, 27, 3494-3505
- (4) King D. M., Du X., Cavanagh A. S., Weimer A., Nanotechnology, 2008, 19, 445401-445406
- (5) Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C. K.; Hansen, O., Chorkendorff, I., J. Am. Chem. Soc., **2013**, *135*, 1057-1064
- (6) Di Quarto, F.; La Mantia, F., Santamaria, M., Electrochim. Acta, 2005, 50, 5090-5102
- (7) Alibabaei, L.; Luo, H.; House, R. L.; Hoertz, P. G.; Lopez, R., Meyer, T. J., J. Mater. Chem. A, **2013**, *1*, 4133-4145
- (8) Wang, W., Alfantazi, A., J. Electrochem. Soc., 2013, 160, C1-C11