Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

CoNiO₂/TiN-TiO_xN_y Composites for Ultrahigh Electrochemical Energy Storage and Simultaneous Glucose Sensing

Zheng Peng, Dingsi Jia, Jing Tang, Yuhang Wang, Lijuan Zhang, and Gengfeng Zheng*

† Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai,

200433, People's Republic of China

* Address correspondence to: gfzheng@fudan.edu.cn

Figure S1. SEM image of (a) pure Ni foam, (b) TiO_2 thin film, (c) $TiN-TiO_xN_y$ thin film, and (d) $CoNiO_2 NW/TiN-TiO_xN_y$ thin film composite.

Figure S2. XPS spectra. (a) N 1s , (b) Ti $2p_{3/2,1/2}$, (c) O 1s peaks of TiO₂ thin film before (black curve) and after ammonia treatment (red curve).

Figure S3. XPS result of Co and Ni atomic percentage. The powder was scrathed from the electrode.

Figure S4. (a) N_2 sorption isotherms, and (b) the calculated specific surface area and areal capacitance values of CoNiO₂ electrodes under various calcination temperatures.

Figure S5. XRD patterns of samples calcined in N_2 under various temperatures. The red dots indicate the diffraction peaks of CoNiO₂.

Figure S6. CV curves of the $CoNiO_2/TiN$ -TiO_xN_y composite with different scan rates.

Figure S7. SEM images of (a) $CoNiO_2$ electrode and (b) $CoNiO_2/TiN-TiO_xN_y$ composite electrodes.

Figure S8. Charge/discharge curves of $CoNiO_2/TiN-TiO_xN_y$ electrode in (a) the 1–4 cycles and (b) in the 3001–3004 cycles.

Calcination Temperature	BET surface area	Average Pore Size	Pore Volume
(°C)	$(m^2 g^{-1})$	(nm)	$(cm^3 g^{-1})$
250	127.4	8.48	0.308
300	72.5	8.00	0.169
350	41.6	8.44	0.100

Table S1. The porosity properties of $CoNiO_2$ nanowires under various calcination temperatures.