Supporting Information

Superhydrophobic SiO₂-based Nanocomposite being Modified with Organic Groups as Catalyst for Selective Oxidation of Ethylbenzene

Chen Chen ^a, Song Shi ^a, Min Wang ^a, Hong Ma ^a, Lipeng Zhou ^b, Jie Xu ^{a*}

E-mail: xujie@dicp.ac.cn

Fig. S1. Co K-edge XANES spectra for (a) Co-SiO₂ and (b) Pr-Co-SiO₂

^a State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.

^b Institute of Catalysis, Department of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, PR China

Fig. S2. Comparison of reaction mixture after catalytic reaction with hydrophilic Co- SiO_2 (a) and surperhydrophobic Pr-Co- SiO_2 (b) as catalyst, respectively

Fig. S3. Relationship between ethylbenzene conversion and carbon chain number of the organic groups

Fig. S4. Geometric information of different organic groups bonding on the surface of ${
m SiO}_2$.

Table S1. Catalytic performance of Pr-Co-SiO₂ and various reported catalytic system in literature for selective oxidation of ethylbenzene

Catalyst	Temp. (K)	Time (h)	O ₂ Pressure (MPa)	Solvent	Conv.	Selectivity of Main Products		Ref.
						Ketone	Alcohol	
Pr-Co-SiO ₂	393	6	1.0	-	70.4	87.5	6.4	Present work
Mn-MgAl hydrotalcite	408	5	1.0	-	50.3	96.7	Not Mentioned	54
Cobalt(Ⅲ) Pyridinecarboxami de	423	8	1.6	-	70.8	86.1	1.5	48
Cobalt(Ⅲ) Pyridinecarboxami de	393	4	1.6	-	49.8	88.0	9.3	48
Carbon nanotube	428	4	1.5	CH ₃ CN	38.2	60.9	9.8	9
Co/SBA-15	393	6	1.0	-	37.3	74.3	19.0	11
MnS-1	383	6	1.0	-	33	87	13	55
DACAQ/NHPI/HY	353	10	0.3	CH ₃ CN	66.2	95.8	4.2	56
DDQ/NHPI	353	6	0.3	CH ₃ CN	59.3	88.2	6.2	57