Supporting Information

Hetero-Structured TiO₂/SrTiO₃ Nanotube Array Film with Highly Reactive Anatase TiO₂ {001} Facets

Juan-Ru Huang,^{a,b} Xin Tan, ^{a,b,e} Tao Yu^{*, a,c}, Lin Zhao,^b Song Xue,^d and Wen-Li Hu^b

^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China ^bSchool of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China ^cTianjin University-National Institute for Materials Science Joint Research Center, Tianjin University, Tianjin, 300072, China

^dDepartment of Applied Chemistry, Tianjin University of Technology, Tianjin, 300384, China

^eSchool of Science, Tibet University, Lhasa City, 850000, China

*Corresponding Author: Yu Tao

Tel.: 86-22-2350-2142. E-mail: yutao@tju.edu.cn

Experimental Section

Vertically oriented TiO_2 nanotube array layer with a Ti substrate was fabricated via anodization, which is similar to our previous work¹. Before anodization, a Ti foil was soaked into anhydrous ethanol, isopropanol, and distilled water for 10 min with ultrasonic treatment. The anodization at a direct current of 60 V was conducted in a two-electrode electrochemical cell of a Ti substrate (0.5 mm, 1 cm × 4 cm, 99.7%), Pt wire (99.7%), and ethylene glycol electrolyte with 0.5 wt.% NH₄F and 3.0 vol.% tri-distilled water. After 30 min pre-anodization, The Ti substrate with regularly-arranged hexagonal patterns was used as the template to implement 120 min anodization at room temperature, and the as-formed TiO₂ nanotube array layer on the Ti substrate was washed in distilled water and then dried at 120 °C in air.

The anodized TiO₂ layer was used as a structure-directed template and initial reactant to fabricate hetero-structured TiO₂/SrTiO₃ (TSr) nanotube arrays via a hydrothermal reaction. The anodized Ti substrate was vertically put in a 50 mL Teflon-lined stainless steel autoclave, filling 40 mL of 0.010, 0.025 and 0.050 M Sr(OH)₂ hydrothermal solution, then the autoclave was sealed using a holder and placed in an oven at 200 °C for 30 min. After the hydrothermal reaction, the sample was degreased with 1 M HCl solution to remove residual Sr(OH)₂ solution, and then washed with anhydrous ethanol and distilled water several times, followed by annealing at 250 and 450 °C in air for 2 h with the temperature ramp 2 °C/min. The reference TiO₂ nanotube array layer and a Ti substrate was implemented the same annealing. The resulting samples before and after annealing at 250 °C with 0.025 M Sr(OH)₂ solution, the reference TiO₂ nanotubes before and after annealing at 450 °C, and Ti substrate were marked as TSr₃₀₀/Ti,

 TSr_{301}/Ti , TSr_{302}/Ti , $TSr_{301}*/Ti$, $TSr_{30}*/Ti$, $TSr_{0}*/Ti$, TSr_{0}/Ti and Ti (See **Table. S1**), respectively.

The samples were characterized via XRD (CuKa, D8-Focus, AXS, Germany), FE-TEM with EDX (JEM-2100F, JEOL, Japan) and FE-SEM (S-4800, HITACHI, Japan). The bond energies of the hetero-structured TSr samples were measured via XPS (PHI1600, Perkin Elmer, USA). Raman spectra were acquired with a confocal system with an excitation wavelength of 532 nm and resolution of 2 cm⁻¹ (InVia Reflex, RENISHAW, UK).

Photocatalytic and photoelectrocatalytic performance of the hetero-structured and reference samples were evaluated by the concentration difference of "target molecular" methylene blue (MB) aqueous solution. The reaction was employed in a home-made, cylindrical quartz reactor with a water cooling jacket and a Xenon lamp (HSX-F300, 300W, Beijing NBet Technology CO., Ltd.) along with collimated, filtered light (CuSO₄ filter, λ =365nm), and the distance between the light source and samples was about 28.0 cm and the average UV intensity impacting the samples surface was measured to be 10.0 mW/cm² using a spectroradiometer (USR-40; Ushio Inc., Japan). Beforehand, the hetero-structured and reference TSr₀/Ti samples (active size: 1.0 cm \times 2.0 cm) with facing the light source, were vertically placed in the reactor containing 100 ml of 10 mg/L MB solution, and then the reactor was sealed using a rubber stopper with a fixed tube of flowing N₂. During these processes, N₂ was continuously introduced into the cell to keep target MB concentration uniformity, and MB solution was kept in the dark for 30 min to maintain the MB absorption-desorption equilibrium before the decolorizing reaction, then the MB solution with the reactive time was measured with using a UV-Vis spectrophotometer (T6, PERSEE, China) at an intensity of 665 nm.

The catalytic activity and electrochemical properties were investigated in 100 mL of 10 mg/L MB electrolyte (pH = 5) solution containing 0.1 M NaCl solution (supporting electrolyte) using a three-electrode configuration with a hetero-structured sample as a anode, saturated Ag/AgCl as a reference electrode, and a Pt silk as a counter electrode, and the pH of electrolyte was regulated by 1 M HCl and/or NaOH solution. A scanning potentiostat (CH Instruments, model CH 660E) was used to measure currents at a scan rate of 10 mV/s with the voltage range from -1.0 V to 1.0 V and provide the applied voltage (0.5 V) for the photoelectrocatalytic process, ant the other operation is similar to the photocatalysis.

Samples	Concentration of Sr(OH) ₂ solution	Annealing	Hydrothermal time
	(M)	(°C)	(min)
TSr ₃₀₀ /Ti	0.010	450	30
TSr ₃₀₁ /Ti	0.025	450	30
TSr ₃₀₂ /Ti	0.050	450	30
TSr ₃₀₁ */Ti	0.025	No annealing	30
TSr ₃₀ */Ti	0.025	250	30
TSr ₀ */Ti	0	No annealing	0
TSr ₀ /Ti	0	450	0
Ti	0	450	0

Table S1 the hetero-structured and reference samples are fabricated under different conditions

Figures Caption:

Fig. S1 XRD patterns of the hetero-structured TSr₃₀₁*/Ti, TSr₃₀*/Ti samples.

Fig. S2 (a) Top-view and (b) side-view FE-SEM of the template TSr₀*/Ti sample.

Fig. S3 (a) Low-resolution and (b) high-resolution FE-TEM views of the reference TSr_0 sample and the corresponding SAED patterns of the selected area A, B.

Fig. S4 Low-resolution FE-TEM views of the (a) hetero-structured TSr₃₀₂, the (b-c) SAED patters of selected area B, C and (d) EDX spectra of the sample.

Fig. S5 Raman spectra of the hetero-structured TSr₃₀₁/Ti and reference TSr₀/Ti samples.

Fig. S6 (a) CV curves of the hetero-structured TSr_{301}/Ti sample for the anode (2 circle); (b) LSV curves of the hetero-structured TSr_{301}/Ti and reference TSr_0/Ti samples for the anode.

Fig. S7 Adsorption spectra of photocatalytic decolorizing MB solution over the reference TSr_0/Ti (a) and hetero-structured TSr_{301}/Ti (b) samples with reaction time.

Fig. S8 Adsorption spectra of photoelectrocatalytic decolorizing MB solution over the reference (a) TSr₀/Ti and hetero-structured (b) TSr₃₀₁/Ti samples with reaction time.

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Fig. S7

Fig. S8

References

1 J. R. Huang, X. Tan, T. Yu, L. Zhao and S. Xue, *Rsc Adv.*, 2012, 2, 12657-12660.