Supplementary information for Surface Properties of *α*-MnO₂: Relevance to Catalytic and Supercapacitor Behaviour

David A. Tompsett,* Stephen C. Parker, and M. Saiful Islam*

Department of Chemistry, University of Bath, Bath BA2 7AY, UK.

E-mail: dt331@bath.ac.uk; m.s.islam@bath.ac.uk Phone: +44(0)1225 386521. Fax: +44(0)1225 386231

Surface Energies of α -MnO₂ from Interatomic Potentials

This study employs well-established interatomic potentials methods, which are reviewed in detail elsewhere.^{1,2} The model due to Parker and co-workers^{3,4} for rutile β -MnO₂, that has been utilised successfully in several studies,^{5,6} is augmented by the inclusion of a core-shell model for the oxygen. The interactions between ions are represented in terms of a long-range Coulmbic term with the addition of an analytic term representing short-range interactions such as chemical bonding. In the model employed these short-range effects are modeled by a Buckingham potential with the form:

$$V_{ij}(r_{ij}) = A \exp(-r_{ij}/\rho) - C/r_{ij}^{o}$$
⁽¹⁾

where r is the interatomic separation and A, ρ , and C are ion-ion potential parameters. In the model used by Parker *et al.* for rutile MnO₂ the charges on the Mn and O ions are represented

^{*}To whom correspondence should be addressed

by a rigid ion model, with partial charges. The potential parameters are presented in Table S1. To apply interatomic potentials to the lower symmetry α -MnO₂ structure we have split the charge of O^{1.1–} into a shell of charge -1.8e and a core of charge 0.7*e*, with a spring constant of K = 34.3eV·Å⁻². With this change the calculated lattice parameters are within 1.5% of those observed experimentally. In this work we use this accurate interatomic potential model to calculate the surface energies using METADISE⁷ up to high indexes. The calculated surface energies are shown in Table S2. The resulting equilibrium crystal morphology from a Wulff construction is shown in Figure S1.

Table S1: Parameters describing the interatomic potentials model.

interaction	A (Å)	ρ (Å)	C (eV/Å ⁻⁶	species	q(<i>e</i>)
$Mn^{2.2+} - Mn^{2.2+}$	23530.50	0.156	16.00	$Mn^{2.2+}$	2.20
$Mn^{2.2+} - O^{1.1-}$	15538.20	0.195	22.00		
$O^{1.1-} - O^{1.1-}$	11782.76	0.234	30.22	$O^{1.1-}$	-1.10

Figure S1: Predicted morphology of α -MnO₂ from interatomic potentials.

Methodology in the PBE+U Framework

When using PBE+U the selection of an appropriate U value for the system is important. This may be achieved for a given material within the framework of Density Functional Theory (DFT) by a self-consistent calculation.⁸ In the present work an additional complication is introduced due to the desire to study oxygen vacancy formation at surfaces, which results in a change of oxidation state of the transition metal from Mn^{4+} to Mn^{3+} . Therefore, a value of U must be chosen to represent the system in both states. To achieve this we have followed the practice in previous DFT+U works involving changes in oxidation state, for instance for Li-ion intercalation,⁹ by calculating the value of U in both oxidation states and then utilizing the average between the two. It is important to note that the self-consistent calculation of U is employed to calculate the spherical part of the PBE+U interaction, which in the framework of the fully-localized limit is appropriately expressed as (U-J),¹⁰ which we do from here on. In this work we choose a value of (U-J) = 5.2 eV, which is the average of the self-consistently calculated values for Mn^{4+} ((U-J) = 5.6 eV) and Mn^{3+} ((U-J) = 4.8 eV). The Mn^{3+} calculation was performed using α -LiMnO₂, which retains the same structural features as α -MnO₂ with a differing oxidation state for Mn. Since the Slater integrals F^2 and F^4 (that determine exchange and the anisotropy of the Coulomb ineraction) are typically weakly screened in solids^{11,12} we employ an atomic-limit value of J = 1.0 eV, which is appropriate to Mn^{4+} and Mn^{3+} .

References

- (1) Catlow, C. R. A. Ed., *Computer Modelling in Inorganic Crystallography* (Academic Press, San Diego, 1997).
- (2) Hill, J. R. and Freeman, C. M. and Subramanian, L. In, *Reviews in Computational Chemistry* (Liphowitz, K. B. and Boyd, D. B. Eds., Wiley, New York, 2000).
- (3) Maphanga, R. R.; Sayle, D. C.; Sayle, T. X. T.; Ngoepe, P. E. Phys. Chem. Chem. Phys. 2011, 13, 1307.
- (4) Maphanga, R. R.; Parker, S. C.; Ngoepe, P. E. Surface Science 2009, 603, 3184 3190.
- (5) Sayle, T. X. T.; Maphanga, R. R.; Ngoepe, P. E.; Sayle, D. C. Journal of the American Chemical Society 2009, 131, 6161–6173.

- (6) Sayle, T. X. T.; Catlow, C. R. A.; Maphanga, R. R.; Ngoepe, P. E.; Sayle, D. C. Journal of the American Chemical Society 2005, 127, 12828–12837.
- (7) Watson, G. W.; Kelsey, E. T.; de Leeuw, N. H.; Harris, D. J.; Parker, S. C. J. Chem. Soc., Faraday Trans. 1996, 92, 433.
- (8) Madsen, G.; Novak, P. Europhys. Lett. 2005, 69, 777.
- (9) Wang, L.; Zhou, F.; Meng, Y. S.; Ceder, G. Physical Review B 2007, 76.
- (10) Ylvisaker, E. R.; Pickett, W. E.; Koepernik, K. Phys. Rev. B 2009, 79, 035103.
- (11) Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Phys. Rev. B 1991, 44, 943–954.
- (12) Antonides, E.; Janse, E. C.; Sawatzky, G. A. Phys. Rev. B 1977, 15, 1669–1679.

Table S2: Predicted surface energies for α -MnO₂ from our interatomic potential model. The subscripts after the miller indices of a single surface indicate different surface terminations. Note that only the three lowest energy terminations are shown for each surface. $\frac{\overline{\text{Miller Index} \quad E_{\text{surf}} (\text{Jm}^{-2}) \quad \text{Termination}}{(001) \qquad 1.89 \qquad \text{MnO}}$

miner maen		renniation
(001)	1.89	MnO
$(100)_a$	1.15	0
$(100)_b$	1.15	MnO
$(100)_{c}$	1.23	0
$(101)_a$	1.70	О
(101) _b	1.94	Mn
$(101)_{c}$	1.99	MnO
$(110)_a$	0.99	0
$(110)_b$	1.31	0
$(110)_{c}$	1.45	0
$(111)_a$	2.03	MnO
$(111)_b$	2.04	0
$(111)_{c}$	2.09	MnO
$(210)_a$	2.07	MnO
$(210)_b$	2.58	MnO
$(210)_c$	2.61	0
$(201)_a$	2.02	MnO
$(201)_b$	2.10	MnO
$(201)_c$	2.13	0
$(102)_a$	1.91	0
$(102)_b$	2.06	MnO
$(102)_c$	2.09	MnO
$(211)_a$	1.77	0
$(211)_b$	2.45	Mn
$(112)_a$	1.88	Mn
$(112)_b$	1.98	Mn
$(112)_{c}$	2.06	Mn
$(122)_a$	1.97	0
$(122)_b$	2.02	MnO
$(122)_{c}$	2.05	MnO
$(221)_a$	1.89	MnO
$(221)_b$	2.10	0
$(221)_{c}$	2.24	0
$(211)_a$	1.77	0
(211) _b	2.24	Mn