Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Asymmetric metal oxide pseudocapacitors advanced by three-dimensional

nanoporous metal electrodes

L. Y. Chen,^a Y. Hou,^a J. L. Kang,^a A. Hirata^a and M. W. Chen^{*,a,b,c}

^a WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

^b CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan

^c State Key Laboratory of Metal Matrix Composites, School of Materials Science and

Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China

* Corresponding author. E-mail: mwchen@wpi-aimr.tohoku.ac.jp

Fig. S1 Internal resistances of (a) the RuO₂-NPG electrode; (b) the Co(OH)₂-NPG electrode; and (c) RuO₂-NPG//Co(OH)₂-NPG supercapacitor in 1 M NaOH electrolyte.

Fig. S2 Combined CV curves of the RuO_2 -NPG and $Co(OH)_2$ -NPG electrodes in the threeelectrode system.

Fig. S3 Specific capacitance of the RuO₂-NPG//Co(OH)₂-NPG supercapacitor at different scan rates in 1 M NaOH electrolyte.

Fig. S4 EIS spectra of the RuO₂-NPG//Co(OH)₂-NPG supercapacitor and relevant symmetric supercapacitors in 1 M NaOH electrolyte.

	Specific	Energy	Power	
Electrodes	capacitance	density	density	Ref.
	(F/g)	(Wh/kg)	(kW/kg)	
RuO ₂ -NPG//Co(OH) ₂ -NPG	350	120	70	This work
Transition-metal-oxide nanowire//SWCNT	184	25.5	50.3	[1]
MnO ₂ nanowire//Graphene	31	30.4	5	[2]
RGO-RuO ₂ //RGO-PANi		26.3	49.8	[3]
Ni(OH) ₂ //CNT	112	50.6	2	[4]
Graphene MnO ₂ //Graphene		10.03	2.53	[5]

Table S1. Comparison of specific capacitance, energy density, and power density for different asymmetric supercapacitors.

[1] Chen, P. C.; Shen, G. Shi, Z. Y.; Chen, H. T.; Zhou, C. W. ACS Nano 2010, 4, 4403.

[2] Wu, Z. S.; Ren, W. C.; Wang, D. W.; Li, F.; Liu, B. L.; Cheng, H. M. ACS Nano 2010, 4, 5835.

- [3] Zhang, J. T.; Jiang, J. W.; Li, H. L.; Zhao, X. S. Energy Environ. Sci. 2011, 4, 4009.
- [4] Tang, Z.; Tang, C. H.; Gong, H. Adv. Funct. Mater. 2012, 22, 1272.

[5] Deng, L. J.; Zhu, G.; Wang, J. F.; Kang, L. P.; Liu, Z. H.; Yang Z. P.; Wang, Z. L. J. Power sources 2011, 196, 10782. **Equation S1**. Calculating the theoretical specific capacitance of asymmetric supercapacitor from the experimental specific capacitance of electrode material measured by three-electrode method.

$$\frac{1}{C_{sc}} = \frac{1}{C_{+}} + \frac{1}{C_{-}}$$

$$C_{sc}^{s} = \frac{C_{sc}}{M_{+} + M_{-}}$$
(S1)

- C_{sc} : Capacitance of supercapacitor (measured by 2-electrode method)
- C_+ : Capacitance of positive electrode (measured by 3-electrode method)
- C_{-} : Capacitance of negative electrode (measured by 3-electrode method)
- C_{sc}^{s} : Specific capacitance of supercapacitor (normalized by weight M₊ + M₋)
- C_{+}^{s} : Specific capacitance of positive electrode (normalized by weight M₊)
- C_{-}^{s} : Specific capacitance of negative electrode (normalized by weight M₋)

From the Equation S1, the theoretical specific capacitance of asymmetric supercapacitor can be calculated about \sim 375 F/g, which is close to the experimental value (350 F/g) and evidently lower than the specific capacitance of the electrode material.