Design of Yolk-shell Fe₃O₄@PMAA Composite Microspheres for

Adsorption of Metal Ions and pH-controlled Drug Delivery

Linling Zhao, Huarong Liu*, Fengwei Wang and Lai Zeng Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

Corresponding author: Huarong Liu; Email address: hrliu@ustc.edu.cn (H.R.Liu)

Fig. S1. FTIR spectra of Fe₃O₄@PMAA microspheres in a different phosphate buffer solution: (a) pH=4.5, (b) pH=10. The absorption peak at 2300-2400 cm⁻¹ is attributed to the dihydric phosphate.¹

Fig. S2 Conductivity titration curve of yolk-shell Fe_3O_4 /PMAA microspheres (the shell thickness is 40 nm) dispersed in HCl aqueous solution by 0.01 mol L⁻¹ NaOH titrant

As shown in Fig. S2, when 0.01 mol L⁻¹ NaOH titrant (the exact concentration is 0.0104 mol L⁻¹ after the calibration of potassium hydrogen phthalate) was added dropwise into the Fe₃O₄@PMAA microspheres dispersed in 0.01 mol L⁻¹ HCl aqueous solution, the electric conductivity of the dispersion first decreased abruptly due to the formation of Na⁺ ions instead of H⁺ ions during the neutralization reaction between NaOH and HCl (the electric conductivity of H⁺ is larger than that of Na⁺). As the electric conductivity of the dispersion decreased to minimum value (point B), it suggested that the HCl had completely reacted with NaOH. And then the electric conductivity of the dispersion increased slowly, because the neutralization reaction of the -COOH groups and the NaOH led to the increasing Na⁺ concentration and the formation of -COO⁻ (their electric conductivities are weak). At point C, the injected NaOH solution entirely reacted with -COOH groups. After that, the electric conductivity of the dispersion increased abruptly due to the increasing NaOH concentration (the electric conductivity of OH⁻ is large). Therefore, the content of -COOH groups in Fe₃O₄@PMAA microspheres (C_{COOH} , mmol g⁻¹) can be calculated by the following equation:

$$C_{COOH} = \frac{(V_C - V_B) \times C_{NaOH}}{M}$$

Where, V_C is the volume of NaOH at point C (ml), V_B is the volume of NaOH at point B (ml), C_{*NaOH*} is the concentration of NaOH (mol L⁻¹) and M is the weight of Fe₃O₄@PMAA microspheres (g). Therefore, we can calculate from Fig. S2 that C_{*COOH*} = $(58.2-20.6) \times 0.0104/0.1 = 3.91 \text{ mmol g}^{-1}$ for Fe₃O₄@PMAA-3.

Fig. S3. Calibration curve of the absorbance at 272 nm *versus* the concentration of ceftriaxone sodium (CTX) solution

Fig. S4 The effect of thickness of PMAA shells and void space of yolk-shell Fe_3O_4 @PMAA microspheres on the release of CTX at pH=4.5.

Table S1 The influence of the thickness of PMAA shells and void space of yolk-shell

Fe ₂ O ₄ @PMAA	microspheres of	n adsorption	capacities of F	∙b²+ at pH 6 ar	nd drug loading	capacity
				• p== •		- inparted by

Sample	PMAA (nm)	Void space	q _e	DLC (%)
		(µm ³)	(mmol/g)	
Fe ₃ O ₄ @PMAA-1	15	0.13	1.02	94
Fe ₃ O ₄ @PMAA-2	25	0.13	1.87	138
Fe ₃ O ₄ @PMAA-3	40	0.13	2.48	180
Fe ₃ O ₄ @PMAA-4	40	0.058	2.45	178
Fe ₃ O ₄ @PMAA-5	40	0.024	1.98	152

Notes and references

1. F. Loretta, S. Perumal and S. Ramalingom, Asian. Chemistry, 2013, 25, 1921.