Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supplementary data

Lithium iron phosphate/nitrogen-doped reduced graphene oxide nanocomposite as a cathode material for high power lithium ion batteries

Jong-Pil Jegal, Kwang-Chun Kim, Myeong Seong Kim, and Kwang-Bum Kim*

Department of Materials Science and Engineering, Yonsei University, 134 Shinchondong, Seodaemoon-gu, Seoul, 120-749, Republic of Korea

Figure S1. SEM image of the FePO₄·H₂O nanoparticles synthesized by a simple precipitation method using H_2O_2 as the oxidizing agent

Figure S2. TGA curve of the LiFePO₄/NrGO nanocomposite

Figure S3. Charge-discharge profiles of the control electrode fabricated with commercial LiFePO₄ nanoparticles at the electrode thickness of (a) 8, (b) 21, and (c) 37 μ m.

Figure S4. Charge-discharge profiles of the LiFePO₄/rGO synthesized with the same synthetic method except the addition of urea at the electrode thickness of 11 μ m.

Figure S5. Initial voltage drop of electrodes fabricated with (a) LiFePO₄/NrGO nanocomposite, and (b) commercial LiFePO₄ nanoparticles.

Figure S6. EIS data for the electrodes fabricated with the LiFePO₄/NrGO nanocomposite and the commercial LiFePO₄ nanoparticles.

Figure S7. Cyclic voltammograms of the LiFePO₄/NrGO nanocomposite measured at (a) 25, (b) 0, and (c) -20 °C.

Temperature (°C)	$D_{cathodic} (cm^2 s^{-1})$	$D_{anodic} (cm^2 s^{-1})$
25	9.27×10^{-15}	1.29×10^{-14}
0	4.66×10^{-15}	6.80×10^{-15}
-20	1.62×10^{-15}	1.80×10^{-15}

Table S1a. Apparent diffusion coefficients of the LiFePO₄/NrGO nanocomposite according to the temperatures.

Table S1b. Apparent diffusion coefficients of the commercial LiFePO₄ obtained at 25 °C.

Temperature (°C)	$D_{cathodic} \ (cm^2 \ s^{-1})$	D _{anodic} (cm ² s ⁻¹)
25	8.94×10^{-15}	1.09×10^{-14}

Apparent diffusion coefficients of the Li⁺ ions in the LiFePO₄/NrGO nanocomposite and the commercial LiFePO₄ were calculated using Randle-Sevcik equation as follows:

$$I_p/m = 0.4463F(F/RT)^{1/2}A_e(D_{app})^{1/2}C_{Li}^*v^{1/2}$$

where, I_p is the peak current in amperes, *m* is the mass of electrodes, *F* is the Faraday constant, *R* is the gas constant, A_e is the surface area of the electrode, D_{app} is the apparent diffusion coefficient, C_{Li}^* is the initial concentration of Li in LiFePO₄ (0.0228 mol cm⁻³), and v is the scan rate in V/s.