Supporting Information

Li₄Ti₅O₁₂-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: synergistic effect of doping, incorporating a conductive phase and reducing particle size

Chunfu Lin^a, Xiaoyong Fan^a, Yuelong Xin^b, Fuquan Cheng^b, Man On Lai^a, Li Lu^a*, Henghui Zhou^b*

^a Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore

^b College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.

* Corresponding authors. Tel.: +65 65162236; fax: +65 67791459. E-mail address: luli@nus.edu.sg (L. Lu). Tel.: +86 10 62757908; fax: +86 10 62757908. E-mail address: hhzhou@pku.edu.cn (H. Zhou).

Fig. S1 X-ray diffraction pattern of Li_{3.5}Fe_{0.75}Ti_{4.75}O₁₂.

Fig. S2 X-ray diffraction patterns of $Li_{4-x}Cr_{3x}Ti_{5-2x}O_{12}$ ($0 \le x \le 1$).

 $\label{eq:Fig.S3} \begin{array}{l} Fig. S3 \ Rietveld \ refinement \ plots \ of \ the \ X-ray \ diffraction \ patterns \ for \ Li_{3.9}Fe_{0.15}Ti_{4.95}O_{12}, \\ Li_{3.7}Fe_{0.45}Ti_{4.85}O_{12}, \ Li_{3.95}Cr_{0.15}Ti_{4.9}O_{12}, \ Li_{3.9}Cr_{0.3}Ti_{4.8}O_{12}, \ Li_{3.85}Cr_{0.45}Ti_{4.7}O_{12}, \ Li_{3.67}Cr_{0.99}Ti_{4.34}O_{12} \ and \\ Li_{3.33}Cr_{2.01}Ti_{3.66}O_{12}. \end{array}$

Fig. S4 Energy-dispersive X-ray analysis of $Li_{3.7}Fe_{0.45}Ti_{4.85}O_{12}$ collected from an energy-dispersive X-ray analyzer (NORAN NSS202E). The obvious C peak shows the existence of carbon created in the synthesis of Fe^{2+} doped LTO.

Fig. S5 Relationships between Z' and $\omega^{-0.5}$ of (a) $\text{Li}_{4-2x}\text{Fe}_{3x}\text{Ti}_{5-x}\text{O}_{12}$ ($0 \le x \le 0.15$) and $\text{Li}_{4-x}\text{Cr}_{3x}\text{Ti}_{5-2x}\text{O}_{12}$ ($0 \le x \le 1$) electrodes at low frequencies.

Spinel $Li_{4-2x}Fe_{3x}Ti_{5-x}O_{12}$, space group: $Fa3m$ (cubic)					Spinel $Li_{4-x}Cr_{3x}Ti_{5-2x}O_{12}$, space group: $Fa3m$ (cubic)							
Composition		x	0	0.05	0.1	0.15	0.05	0.1	0.15	0.33	0.67	1
			[Li _{2.997} Ti _{0.00}	$[Li_{2.855}Ti_{0.14}]$	$[Li_{2.663}Ti_{0.33}$	[Li _{2.470} Ti _{0.53}	$[Li_{2.994}Ti_{0.00}$	[Li _{2.985} Ti _{0.01}	$[Li_{2.960}Ti_{0.04}$	$[Li_{2.931}Ti_{0.06}]$	[Li _{2.896} Ti _{0.10}	[Li _{2.828} Ti _{0.17}
Nominal composition			3]8a[Li _{1.003} T	$_{5}]_{8a}[Li_{1.045}F$	$_{7}]_{8a}[Li_{1.137}F$	$_{0}]_{8a}[Li_{1.230}F$	$_{6}]_{8a}[Li_{0.956}C$	$_{5}]_{8a}[Li_{0.915}C$	$_{0}]_{8a}[Li_{0.890}C$	$_{9}]_{8a}[Li_{0.739}C$	$_{4}]_{8a}[Li_{0.434}C$	$_{2}]_{8a}[Li_{0.172}C$
			$i_{4.997}]_{16d}[O_{12}$	$e_{0.15}Ti_{4.805}]_1$	$e_{0.3}Ti_{4.563}]_{16}$	$e_{0.45}Ti_{4.320}]_1$	$r_{0.15} Ti_{4.894}]_{16}$	$r_{0.3} Ti_{4.785}]_{16d}$	$r_{0.45} Ti_{4.660}]_{16}$	$r_{0.99}Ti_{4.271}]_{16}$	$r_{2.01}Ti_{3.556}]_{16}$	$r_{3}Ti_{2.828}]_{16d}[$
]32e	$_{6d}[O_{12}]_{32e}$	$_{d}[O_{12}]_{32e}$	$_{6d}[O_{12}]_{32e}$	$_{d}[O_{12}]_{32e}$	$[O_{12}]_{32e}$	$_{d}[O_{12}]_{32e}$	$_{d}[O_{12}]_{32e}$	$_{d}[O_{12}]_{32e}$	$O_{12}]_{32e}$
Lattice		а	8.36122(3)	8.36535(4)	8.36974(4)	8.37460(4)	8.35922(3)	8.35763(3)	8.35616(3)	8.34972(3)	8.33761(3)	8.32699(4)
parameter		(Å)										
8a	Li1		0.999(1)	0.952(1)	0.888(1)	0.823(1)	0.998(1)	0.995(1)	0.987(1)	0.977(1)	0.965(1)	0.943(1)
	Ti1		0.001(1)	0.048(1)	0.112(1)	0.177(2)	0.002(1)	0.005(1)	0.013(1)	0.023(1)	0.035(1)	0.057(1)
16d	Li2		0.167(1)	0.174(1)	0.190(1)	0.205(1)	0.159(1)	0.153(1)	0.148(1)	0.123(1)	0.072(1)	0.029(1)
	Ti2	f	0.833(1)	0.801(1)	0.760(1)	0.720(1)	0.816(1)	0.797(1)	0.777(1)	0.712(1)	0.593(1)	0.471(1)
	Fe/		_	0.025(-)	0.05(-)	0.075(-)	0.025(-)	0.05(-)	0.075(-)	0.165(-)	0.335(-)	0.5(-)
	Cr											
32e	0		1(-)	1(-)	1(-)	1(-)	1(-)	1(-)	1(-)	1(-)	1(-)	1(-)
	U	Ζ	0.26301(7)	0.26296(6)	0.26294(6)	0.26291(7)	0.26297(7)	0.26291(6)	0.26287(7)	0.26279(7)	0.26259(7)	0.26249(7)
R_{wp}			0.1029	0.0953	0.0894	0.0908	0.1030	0.1010	0.1013	0.0995	0.0988	0.0933
R_p			0.0787	0.0744	0.0689	0.0689	0.0787	0.0768	0.0774	0.0760	0.0762	0.0712
χ^2			3.005	2.598	2.271	2.348	3.002	2.896	2.886	2.665	2.589	2.313

Table S1 Rietveld refinement results of the X-ray diffraction patterns for $\text{Li}_{4-2x}\text{Fe}_{3x}\text{Ti}_{5-x}\text{O}_{12}$ ($0 \le x \le 0.15$) and $\text{Li}_{4-x}\text{Cr}_{3x}\text{Ti}_{5-2x}\text{O}_{12}$ ($0 \le x \le 1$).

f: site occupancy, *z*: fractional coefficient, R_{wp} : weighted profile residual, R_p : profile residual, and χ^2 : goodness of fit.

Table S2 Properties of all the samples.

	Capacity
area $(S \cdot cm^{-1})$ at $0.1 C$ at $0.1 C$ at $0.1 C$ $(mAh g^{-1})$ $(m$	retention
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	over 200
Li ₄ Ti ₅ O ₁₂ 3.6 3.23 89.3 10.9 5.74×10^{-15} $<1 \times 10^{-9}$ 1555.9 1574.8 1565.4 166 143 105 33 11 Li _{3.9} Fe _{0.15} Ti _{4.95} O ₁₂ 4.4 2.68 62.5 7.78 8.11×10^{-15} 1.9×10^{-8} 1539.2 1583.5 1561.4 161 151 131 82 39 Li _{3.8} Fe _{0.3} Ti _{4.9} O ₁₂ 4.0 3.66 58.8 7.58 1.14×10^{-14} 8.9×10^{-8} 1531.4 1556.4 152 148 137 100 57 Li _{3.7} Fe _{0.45} Ti _{4.85} O ₁₂ 4.3 3.00 64.4 8.22 6.89×10^{-15} 1.7×10^{-7} 1523.4 1578.0 1550.7 149 136 104 61 36 Li _{3.7} Fe _{0.45} Ti _{4.85} O ₁₂ 4.3 3.00 64.4 8.22 6.89×10^{-15} 1.7×10^{-7} 1523.4 1578.0 1550.7 149 136 104 61 36 Li _{4.5} Cr Ti 0 2.6 2.85 81.6 14.4 6.37×10^{-15} 2.4 \times 10^{-8} 1550.7 <t< th=""><th>cycles (%)</th></t<>	cycles (%)
Li3.9Fe0.15Ti4.95O12 4.4 2.68 62.5 7.78 8.11×10^{-15} 1.9×10^{-8} 1539.2 1583.5 1561.4 161 151 131 82 39 Li3.8Fe0.3Ti4.9O12 4.0 3.66 58.8 7.58 1.14×10^{-14} 8.9×10^{-8} 1531.4 1556.4 152 148 137 100 57 Li3.7Fe0.45Ti4.85O12 4.3 3.00 64.4 8.22 6.89×10^{-15} 1.7×10^{-7} 1523.4 1578.0 1550.7 149 136 104 61 36 Li $Cr<_T$ Ti 0 2.6 2.85 81.6 14.4 6.37×10^{-15} $1.550.7$ 1574.2 1562.5 158 126 101 50 21	_
Li_{3.8}Fe_{0.3}Ti_{4.9}O_{12} 4.0 3.66 58.8 7.58 1.14×10^{-14} 8.9×10^{-8} 1531.4 1556.4 152 148 137 100 57 Li_{3.7}Fe_{0.45}Ti_{4.85}O_{12} 4.3 3.00 64.4 8.22 6.89×10^{-15} 1.7×10^{-7} 1523.4 1578.0 1550.7 149 136 104 61 36 Li Cr Ti 0 2.85 81.6 14.4 6.37×10^{-15} 3.4×10^{-8} 1550.7 1562.5 158 126 101 50 216	-
$Li_{3.7}Fe_{0.45}Ti_{4.85}O_{12} 4.3 3.00 64.4 8.22 6.89 \times 10^{-15} 1.7 \times 10^{-7} 1523.4 1578.0 1550.7 149 136 104 61 36$	-
Li Cr. Ti O 2.6 2.85 81.6 14.4 6.27×10^{-15} 2.4 $\times 10^{-8}$ 1550.7 1574.2 1562.5 158 126 101 50 21	-
$L_{13.95}C_{10.15}T_{14.9}O_{12}$ 2.0 2.85 81.0 14.4 0.57×10 5.4×10 1530.7 1574.2 1502.5 158 150 101 50 21	-
$Li_{3.9}Cr_{0.3}Ti_{4.8}O_{12}$ 2.4 2.44 62.8 9.87 1.63×10^{-14} 4.7×10 ⁻⁸ 1548.8 1571.8 1560.3 154 134 104 58 25	-
$Li_{3.85}Cr_{0.45}Ti_{4.7}O_{12} 2.0 2.35 65.4 12.9 1.30 \times 10^{-14} 5.5 \times 10^{-8} 1546.6 1570.8 1558.7 147 128 97 43 17$	-
$Li_{3.67}Cr_{0.99}Ti_{4.34}O_{12} 1.9 \qquad 2.81 74.0 17.3 \qquad 8.37 \times 10^{-15} 6.7 \times 10^{-8} \qquad 1536.1 \qquad 1566.8 1551.5 \qquad 145 \qquad 126 \qquad 94 \qquad 47 \qquad 20$	-
$Li_{3.33}Cr_{2.01}Ti_{3.66}O_{12} 1.9 2.82 61.8 9.23 2.92 \times 10^{-14} 1.1 \times 10^{-7} 1517.5 1552.8 1535.2 141 132 118 83 42$	-
LiCrTiO ₄ 2.5 3.96 51.5 5.77 4.25×10^{-14} 1.3×10^{-7} 1503.5 1544.5 1524.0 138 129 118 97 70	-
$Li_{3.8}Fe_{0.3}Ti_{4.9}O_{12}$ 1534.9 1578.0 1556.5 158 154 148 130 106	117
/MWCNTs	
LiCrTiO ₄ – – – – – – – 1507.0 1535.9 1521.5 141 137 131 120 106	94.6
/MWCNTs-post	
LiCrTiO ₄ – – – – – – – 1508.5 1529.9 1519.2 140 137 133 128 120	95.9
/MWCNTs	

Nominal	Li ₄ Ti ₅	Li _{3.7} Fe _{0.45}	LiCr	Li _{3.95} Co _{0.15}	Li _{3.95} Al _{0.15}	Li ₄ Ta _{0.05}	Li _{3.95} Ga _{0.15}	$Li_{3.9}Mg_{0.1}Al_{0.15}$
formula	O ₁₂	$Ti_{4.85}O_{12}$	TiO ₄	$Ti_{4.9}O_{12}$	$Ti_{4.9}O_{12}$	$Ti_{4.95}O_{12}$	$Ti_{4.9}O_{12}$	$Ti_{4.85}O_{12}$
Electronic								
	$<1\times$	1.7×	1.2×	1.3×	$1.1 \times$	1.0×	2.0 imes	7.9×
conductivity								
	10-9	10-7	10^{-7}	10-9	10-8	10-9	10-9	10-9
$(S \text{ cm}^{-1})$								

Table S3 Electronic conductivities of LTO materials using different dopings, all of which were measured using the same two-probe method [12,13].