Supporting Information

Enhanced selective CO₂ adsorption on polyamine/MIL-101(Cr)

composites

Yichao Lin,^[a] Hao Lin,^[a,b] Haimin Wang,^[b] Yange Suo^[a], Baihai Li,^[a] Chunlong Kong*^[a]

and Liang Chen*[a]

Figure S1. Powder XRD patterns of A before and after loading PEI, and simulated XRD patterns of A.

Figure S2. Powder XRD patterns of sample B before and after loading PEI, and XRD patterns of A-PEI-300.

Figure S3. IR spectra of PEI, A, A-PEI-300, A-PEI-1800, B-PEI-10000 and B-PEI-300.

Figure S4. Weight loss curves of the pure PEI and MIL-101(Cr) before and after loading PEI.

Figure S5. N₂ adsorption/desorption isotherms at 77 K. The symbols: Filled, adsorption; Blank, desorption.

Figure S6. Pore size distribution of the samples A and B before and after loading PEI.

Figure S7. CO₂ adsorption isotherms for B-PEI-300 after CO₂ desorbed at different temperature under vacuum for 1 hour.

Figure S8. CO_2 adsorption properties of B-PEI-300 and B-PEI-300 exposed in the moisture for 2 hours, respectively.

Figure S9. CO₂ adsorption kinetics of A-PEI-300 at 25 °C.

Figure S10. CO₂ adsorption kinetics of A-PEI-300 at 50 °C.

Figure S11. CO₂ adsorption kinetics of A-PEI-1800 at 25 °C.

Figure S12. CO₂ adsorption kinetics of A-PEI-1800 at 50 °C.

Figure S13. CO₂ adsorption kinetics of A-PEI-10000 at 25 °C.

Figure S14. CO₂ adsorption kinetics of A-PEI-10000 at 50 °C.

Figure S15. CO₂ adsorption kinetics of B-PEI-300 at 25 °C.

Figure S16. CO₂ adsorption kinetics of B-PEI-300 at 50 °C.

Figure S17. Cyclic measurements for A-PEI-300 at 25 °C. Between each measurement, the sample was evacuated for 2 hours at 110 °C.

Figure S18. The cyclic CO₂ uptake of PEI-MIL-101-300 at 25 $^{\circ}$ C and 0.15 bar.

Figure S19. Cyclic measurements for A-PEI-1800 at 25 °C. Between each measurement, the sample was evacuated for 2 hours at 110 °C.

Figure S20. Cyclic measurements for A-PEI-10000 at 25 °C. Between each measurement, the sample was evacuated for 2 hours at 110 °C.

Figure S21. N₂ adsorption isotherms of the sample A before and after loading PEI. Symbols: Filled, 25°C; Hollow, 50°C.

Figure S22. N₂ adsorption isotherms of the samples A and B before and after loading PEI. Symbols: Filled, 25°C; Hollow, 50°C.

	mmol CO ₂ / mmol N at 0.15	
	bar	
-	25 °C	50 °C
A-PEI-300	0.77	0.52
A-PEI-1800	0.58	0.51
A-PEI-10000	0.30	0.48
B-PEI-300	0.88	0.65

Table S1 amine efficiency of PEI loaded samples

Isosteric heat calculation

The isosteric heat of CO₂ adsorption values were calculated using the Clausius-Clapeyron equation:

$$\frac{d\ln P}{d(1/T)} = -\frac{Q_{st}}{R}, \quad \ln P = -\frac{Q_{st}}{R}\frac{1}{T} + cons \tan t$$

Figure S23. The CO₂ adsorption isotherms of A-PEI-300 at 25-75 °C

Figure S24 The isosteric heat of the CO₂ adsorption calculated from the adsorption isotherms measured from 25 °C to 75 °Cusing Clausius-Clapeyron equation.