Supporting Information

Quadrupolar (Donor)₂Acceptor-Acid Chromophores for Dye-sensitized Solar Cells: Influence of the Core Acceptor

Coralie A. Richard^a; Zhenxing Pan^b; Anand Parthasarathy^b; Frank A. Arroyave^a; Leandro A. Estrada^a; Kirk S. Schanze^b and John R. Reynolds^a*.

^aSchool of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, United States. ^bDepartment of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611-7200, United States.

Table of Contents

Table S1. Orbital energies for oligomers **DBP-L**, **DBP-B**, **DTP-L**, **DTP-B**, empirical and
obtained via DFT calculations with different hybrids functional (B3LYP, B3PW91, B3PW91-
SCRF and B3LYP-CAM). All energies are in eV.

. 4

Figure S1. Illustration of the computed molecular orbitals for compounds DTP-L (left) and DTP-B (right).

Figure S2. UV-visible absorption spectra in toluene (blue) and simulated absorption spectra determined with TD-DFT at the B3PW91/6-31G* level of theory (black) of DBP-L, DBP-B, DTP-L and DTP-B.

Table S1. Orbital energies for oligomers **DBP-L**, **DBP-B**, **DTP-L**, **DTP-B**, empirical and obtained via DFT calculations with different hybrids functional (B3LYP, B3PW91, B3PW91-SCRF and B3LYP-CAM). All energies are in eV.

Cpd	Empirical		B3LYP		B3PW91		B3PW91-SCRF		B3LYP-CAM	
	HOMO	LUMO	HOMO	LUMO	HOMO	LUMO	HOMO	LUMO	HOMO	LUMO
DBP-L	-6.22	-3.30	-5.52	-2.58	-5.55	-3.00	-5.74	-2.84	-6.75	-1.49
DBP-B	-6.23	-3.54	-5.76	-2.56	-5.90	-2.68	-5.98	-2.84	-7.00	-1.49
DTP-L	-5.63	-3.53	-5.37	-2.82	-5.50	-2.90	-5.50	-2.97	-6.56	-1.77
DTP-B	-6.06	-3.70	-5.62	-2.72	-5.94	-3.01			-6.86	-1.70

Figure S3. Cyclic Voltammetry (CV) data for compounds **DBP-L** (black), **DBP-B** (green), **DTP-L** (blue) and **DTP-B** (red). The data were obtained in benzonitrile solution using 0.1M tetrabutylammonium hexafluorophosphate as the supporting electrolyte, a platinum button working electrode, a non-aqueous Ag/AgNO₃ reference electrode, and a platinum flag counter electrode.

Table S2. Open circuit voltage (Voc), short circuit current (Jsc), fill factor (FF) and efficiency (PCE) for studied sensitizers, for 3 or more devices

Cpd	Voc(V)	Jsc(mA.cm ⁻²)	FF	PCE
DBP-L	0.52 ± 0.01	2.24 ± 0.2	0.62 ± 0.02	0.73 ± 0.02
DBP-B	0.49 ± 0.02	2.61 ± 0.1	0.53 ± 0.03	0.66 ± 0.02
DTP-L	0.43 ± 0.02	2.23 ± 0.2	0.54 ± 0.04	0.53 ± 0.05
DTP-B	0.44 ± 0.01	2.85 ± 0.3	0.53 ± 0.07	0.66 ± 0.06
N3	0.69	11.4	0.42	3.29

Computations Citations

<u>Gaussian:</u> Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Straroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision b.01 **2009**.

<u>B3LYP:</u> Becke A.D., *J.Chem.Phys*, **1993**, *98*, 5648. Lee, C.; Wang, W.; Parr, R., *Phys. Rev. B.*, 1988, 37, 785 Stephens P.J.; Devlin F.J.; Chabalowski C.F.; Frisch M.J., *J.Phys.Chem.*, **1994**, *98*, 11623.

B3LYP-CAM: Yanai T.; Tew D.; Handy N., Chem. Phys. Lett., 2004, 393, 51.

<u>B3PW91:</u> Becke A.D., *J.Chem.Phys*, **1993**, *98*, 5648. Perdew J.P.; Burke K.; Wang Y., *Phys. Rev. B*, **1996**, *54*, 16533