Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Construction and adsorption properties of Porous Aromatic Frameworks via

AlCl₃-triggered Coupling Polymerization

Lina Li, Hao Ren^{*}, Ye Yuan, Guangli Yu and Guangshan Zhu

Synthetic procedures

Table S1 Raw material input and yield of PAFs

Fig. S1 FT-IR spectra of PAFs

Table S2 Characteristic peaks in FIIR spectra of the PAFs.

Fig. S2 Powder X-ray diffraction

Fig. S3 TEM images

Fig. S4. CO₂ and CH₄ adsorption and desorption isotherms for PAF-41

Fig. S5. CO₂ and CH₄ adsorption and desorption isotherms for PAF-42

Fig. S6. CO₂ and CH₄ adsorption and desorption isotherms for PAF-43

Fig. S7. CO₂ and CH₄ adsorption and desorption isotherms for PAF-44

Table S3 BET surface areas of PAFs synthesized at 45 °C and 60 °C

Table S4 Comparison of CO₂ uptakes and isosteric heat of adsorption in POFs

Table S5 Comparison of CH₄ uptakes and isosteric heat of adsorption in POFs

Synthetic procedures

Synthesis of PAF-41: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the system was inflated with inert gas N₂ for 3 times. Next, dried chloroform (40 mL) was injected through a syringe and the mixture was heated to 60 °C for 3 h. Then triphenylamine (1.5 mmol, 367 mg) in 20 mL CHCl₃ was added into the system and the mixture kept stirring at 60 °C for 24 h. After cooling down to room temperature, the crude product was obtained by filtration and washed with 1 M hydrochloric acid solution, methanol, and acetone to remove unreacted monomers and catalyst residues. Further purification of product was carried out by Soxhlet extraction with ethanol, THF, and CHCl₃ for 48 h. The product was dried in vacuum for 8 h at 80 °C to give PAF-42 (364 mg, 98.6% yield).

Synthesis of PAF-42: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the system was inflated with inert gas N_2 for 3 times. Next, dried chloroform (40 mL) was injected through a syringe and the mixture was heated to 60 °C for 3 h. Then tetraphenylmethane (1.5 mmol, 480 mg) in 20 mL CHCl₃ was added into the system and the mixture kept stirring at 60 °C for 24 h. After cooling down to room temperature, the crude product was obtained by filtration and washed with 1 M hydrochloric acid solution, methanol, and acetone to remove unreacted monomers and catalyst residues. Further purification of product was carried out by Soxhlet extraction with ethanol, THF, and CHCl₃ for 48 h. The product was dried in vacuum for 8 h at 80 °C to give PAF-42 (469 mg, 96.1% yield).

Synthesis of PAF-43: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the system was inflated with inert gas N_2 for 3 times. Next, dried chloroform (40 mL) was injected through a syringe and the mixture was heated to 60 °C for 3 h. Then tetraphenylsilane (1.5 mmol, 504 mg) in 20 mL CHCl₃ was added into

the system and the mixture kept stirring at 60 °C for 24 h. After cooling down to room temperature, the crude product was obtained by filtration and washed with 1 M hydrochloric acid solution, methanol, and acetone to remove unreacted monomers and catalyst residues. Further purification of product was carried out by Soxhlet extraction with ethanol, THF, and CHCl₃ for 48 h. The product was dried in vacuum for 8 h at 80 °C to give PAF-42 (469 mg, 96.0% yield).

Synthesis of PAF-44: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the system was inflated with inert gas N₂ for 3 times. Next, dried chloroform (40 mL) was injected through a syringe and the mixture was heated to 60 °C for 3 h. Then tetraphenylgermane (1.5 mmol, 570 mg) in 20 mL CHCl₃ was added into the system and the mixture kept stirring at 60 °C for 24 h. After cooling down to room temperature, the crude product was obtained by filtration and washed with 1 M hydrochloric acid solution, methanol, and acetone to remove unreacted monomers and catalyst residues. Further purification of product was carried out by Soxhlet extraction with ethanol, THF, and CHCl₃ for 48 h. The product was dried in vacuum for 8 h at 80 °C to give PAF-42 (535.8 mg, 93.8% yield).

PAFs	Monomers	AlCl ₃	Yield (%)
PAF-41	367 mg, 1.5 mmol	375 mg, 2.81 mmol	96.1%
PAF-42	480 mg, 1.5 mmol	500 mg, 3.75 mmol	98.6%
PAF-43	504 mg, 1.5 mmol	500 mg, 3.75 mmol	96.0%
PAF-44	570 mg, 1.5 mmol	500 mg, 3.75 mmol	93.8%

Table S1. Raw material input and yield of PAF-41, PAF-42, PAF-43, and PAF-44.

Fig. S1. FTIR spectra of monomers (black) and corresponding polymerization products (red), PAF-41 (a), PAF-42 (b), PAF-43 (c) and PAF-44 (d), respectively.

Category	PAFs	monomers	Product	
		(Monosubstituted Benzene, cm ⁻¹)	(Disubstituted Benzene, cm ⁻¹)	
C-C	PAF-41	1586	1596	
stretching vibration	PAF-42	1594	1602	
	PAF-43	1586	1603	
	PAF-44	1582	1602	
C-C stretching	PAF-41	1491	1504	
vibration	PAF-42	1491	1507 & 1483	
	PAF-43	1481	1507 &1481	
	PAF-44	1483	1507	
Ring deformation	PAF-41	normal	weakened	
vibration	PAF-42	normal	weakened	
710- 695 cm ⁻¹	PAF-43	normal	weakened	
	PAF-44	normal	weakened	
C-H deformation				
vibration of ring	PAF-41	normal	weakened	
nydrogens:	PAF-42	normal	weakened	
$770-730 \text{ cm}^{-1}$	PAF-43	normal	weakened	
(5 adjacent	PAF-44	normal	weakened	
hydrogens)				
C-H deformation	PAF-41	normal	enhanced	
vibration of ring	PAF-42	normal	enhanced	
disubstituted, CH	PAF-43	normal	enhanced	
wagging, 860- 800 cm ⁻¹ (2 adjacent hydrogens)	PAF-44	normal	enhanced	

Table S2. Characteristic peaks in FIIR spectra of benzene ring

Fig. S2. PXRD patterns of the PAFs, PAF-41 (black), PAF-42 (blue), PAF-43 (olive), and PAF-44 (red).

Fig. S3. TEM images of PAF-41 (a), PAF-42 (b), PAF-43 (c) and PAF-44 (d).

Fig. S4. CO_2 and CH_4 adsorption (solid circles) and desorption (open circles) isotherms of PAF-41.

Fig. S5. CO_2 and CH_4 adsorption (solid circles) and desorption (open circles) isotherms of PAF-42.

Fig. S6. CO_2 and CH_4 adsorption (solid circles) and desorption (open circles) isotherms of PAF-43.

Fig. S7. CO_2 and CH_4 adsorption (solid circles) and desorption (open circles) isotherms of PAF-44.

Product	BET surface area	BET surface area
	(45 °C)	(60 °C)
PAF-41	564 m ² g ⁻¹	1119 m ² g ⁻¹
PAF-42	553 m ² g ⁻¹	640 m ² g ⁻¹
PAF-43	500 m ² g ⁻¹	515 m ² g ⁻¹
PAF-44	$495 \text{ m}^2 \text{ g}^{-1}$	$532 \text{ m}^2 \text{ g}^{-1}$

Table S3. Porosity data of PAFs synthesized at different temperature.

material	$S_{BET}/m^2 g^{-1}$	CO ₂ uptake mmol g ⁻¹	T (K)	Q _{stCO2} KJ mol ⁻¹	Ref
PAF-1	5600	2.05	273	15.6	1
		1.09	298		
PAF-3	2932	3.48	273	19.2	1
		1.81	298		
PAF-4	2246	2.41	273	16.2	1
		1.16	298		
COF-1	750	2.32	273		2
COF-5	1670	1.34	273		2
COF-6	750	3.84	273		2
COF-8	1350	1.43	273		2
COF-10	1760	1.21	273		2
COF-102	3620	1.56	273		2
COF-103	3530	1.70	273		2
MOP-A	4077	2.65	273	23.7	3
-		1.45	298		-
MOP-B	1847	3.29	273	21.8	3
-		1.63	298		-
MOP-C	1237	3 86	273	337	3
		2.20	298		-
MOP-D	1213	2.42	273	26.5	3
		1.33	298		-
MOP-E	1470	2.95	273	25.4	3
		1 77	298		-
MOP-F	653	1 80	273	267	3
	000	1.08	298	,	0
MOP-G	1056	2.15	273	26.6	3
	1000	1 25	298	20.0	5
CMP-1	837	2.05	273	26.8	4
	001	1 18	298	20.0	•
$CMP-1-(OH)_2$	1043	1 80	273	27.6	4
	1015	1.00	298	27:0	•
$CMP-1-(CH_2)_2$	899	1.64	273	26.9	4
	077	0.94	298	20.9	I
CMP-1-NH ₂	710	1.64	273	29.5	4
	/10	0.95	298	29.0	I
CMP-1-COOH	522	1.60	273	32.6	4
	522	0.95	298	52.0	
PPF-1	1740	6.07	273	25.6	5
PPF_2	1470	5 55	273	29.0	5
PPF-3	419	2.09	273	21.8	5

Table S4. Comparison of CO_2 uptakes and isosteric heat of adsorption in POFs

PPF-4	726	2.59	273	25.1	5
BILP-2	708	3.39	273	28.6	6
		2.36	298		
BILP-5	599	2.91	273	28.8	6
		1.98	298		
PAF-18-OH	1121	2.50	273	28.0	7
PAF-18-OH	981	3.27	273	29.5	7
PAF-41	1119	3.48	273	28.1	this work
		2.26	298		
PAF-42	640	2.65	273	31.8	this work
		1.51	298		
PAF-43	515	2.16	273	34.8	this work
		1.24	298		
PAF-44	532	2.23	273	34.2	this work
		1.35	298		

material	${ m S_{BET}}/{ m m^2~g^{-1}}$	CH ₄ uptake mmol g ⁻¹	T (K)	Q _{stCH4} KJ mol ⁻¹	Ref
PAF-1	5600	0.80	273	14.0	1
PAF-3	2932	1.21	273	15.0	1
PAF-4	2246	0.80	273	23.0	1
PPF-1	1740	1.52	273	15.1	5
PPF-2	1470	1.44	273	15.9	5
PPF-3	419	0.63	273	19.4	5
PPF-4	726	0.83	273	13.9	5
BILP-2	708	0.88	273	18.4	6
		0.56	298		
BILP-4	1135	1.63	273	13.0	6
		1.13	298		
BILP-5	599	0.94	273	14.6	6
		0.63	298		
BILP-7	1122	1.63	273	14.7	6
		1.13	298		
BILP-3	1306	1.50	273	16.6	8
		1.06	298		
BILP-6	1261	1.69	273	13.2	8
		1.19	298		
PAF-41	1119	1.04	273	17.0	this work
		0.68	298		
PAF-42	640	0.68	273	25.6	this work
			298		
PAF-43	515	0.60	273	29.8	this work
		0.28	298		
PAF-44	532	0.66	273	22.9	this work
		0.41	298		

Table S5. Comparison of CH4 uptakes and isosteric heat of adsorption in POFs

References:

[S1] T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing, S. Qiu, Energy. Environ. Sci.,

- 2011, 4, 3991;
- [S2] H. Furukawa, O. Yaghi, J. Am. Chem. Soc., 2009, 131; 8875;
- [S3] R. Dawson, E. Stöckel, J. Holst, D. Adams, A. Cooper, *Energy. Environ. Sci.*, 2011, 4, 4239;
- [S4] R. Dawson, D. Adams, A. Cooper, Chem. Sci., 2011, 2, 1173;
- [S5] Y. Zhu, H. Long, W. Zhang, Chem. Mater., 2013, 25, 1630;

- [S6] M. Rabbani, H. El-Kaderi, Chem. Mater., 2012, 24, 1511;
- [S7] H. Ma, H. Ren, X. Zou, F. Sun, Z. Yan, K. Cai, D. Wang, G. Zhu, J. Mater. Chem. A, 2013, 1, 752;
- [S8] M. Rabbani, T. Reich, R. Kassab, K. Jackson, H. El-Kaderi, Chem. Commun., 2012, 48, 1141.