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Synthetic procedures

Synthesis of PAF-41: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was
added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the
system was inflated with inert gas N, for 3 times. Next, dried chloroform (40
mL) was injected through a syringe and the mixture was heated to 60 °C for 3
h. Then triphenylamine (1.5 mmol, 367 mg) in 20 mL CHCI; was added into
the system and the mixture kept stirring at 60 °C for 24 h. After cooling down
to room temperature, the crude product was obtained by filtration and washed
with 1 M hydrochloric acid solution, methanol, and acetone to remove
unreacted monomers and catalyst residues. Further purification of product was
carried out by Soxhlet extraction with ethanol, THF, and CHCI; for 48 h. The
product was dried in vacuum for 8 h at 80 °C to give PAF-42 (364 mg, 98.6%
yield).

Synthesis of PAF-42: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was
added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the
system was inflated with inert gas N, for 3 times. Next, dried chloroform (40
mL) was injected through a syringe and the mixture was heated to 60 °C for 3
h. Then tetraphenylmethane (1.5 mmol, 480 mg) in 20 mL CHCIl; was added
into the system and the mixture kept stirring at 60 °C for 24 h. After cooling
down to room temperature, the crude product was obtained by filtration and
washed with 1 M hydrochloric acid solution, methanol, and acetone to remove
unreacted monomers and catalyst residues. Further purification of product was
carried out by Soxhlet extraction with ethanol, THF, and CHCI; for 48 h. The
product was dried in vacuum for 8 h at 80 °C to give PAF-42 (469 mg, 96.1%
yield).

Synthesis of PAF-43: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was
added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the
system was inflated with inert gas N, for 3 times. Next, dried chloroform (40
mL) was injected through a syringe and the mixture was heated to 60 °C for 3

h. Then tetraphenylsilane (1.5 mmol, 504 mg) in 20 mL CHCl; was added into


app:ds:triphenylamine

the system and the mixture kept stirring at 60 °C for 24 h. After cooling down
to room temperature, the crude product was obtained by filtration and washed
with 1 M hydrochloric acid solution, methanol, and acetone to remove
unreacted monomers and catalyst residues. Further purification of product was
carried out by Soxhlet extraction with ethanol, THF, and CHCI; for 48 h. The
product was dried in vacuum for 8 h at 80 °C to give PAF-42 (469 mg, 96.0%
yield).

Synthesis of PAF-44: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was
added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the
system was inflated with inert gas N, for 3 times. Next, dried chloroform (40
mL) was injected through a syringe and the mixture was heated to 60 °C for 3
h. Then tetraphenylgermane (1.5 mmol, 570 mg) in 20 mL CHCl; was added
into the system and the mixture kept stirring at 60 °C for 24 h. After cooling
down to room temperature, the crude product was obtained by filtration and
washed with 1 M hydrochloric acid solution, methanol, and acetone to remove
unreacted monomers and catalyst residues. Further purification of product was
carried out by Soxhlet extraction with ethanol, THF, and CHCI; for 48 h. The
product was dried in vacuum for 8 h at 80 °C to give PAF-42 (535.8 mg, 93.8%

yield).
Table S1. Raw material input and yield of PAF-41, PAF-42, PAF-43, and PAF-44.
PAFs Monomers AlCly Yield
(Y0)
PAF-41 367 mg, 1.5 mmol 375 mg, 2.81 mmol 96.1%
PAF-42 480 mg, 1.5 mmol 500 mg, 3.75 mmol 98.6%
PAF-43 504 mg, 1.5 mmol 500 mg, 3.75 mmol 96.0%

PAF-44 570 mg, 1.5 mmol 500 mg, 3.75 mmol 93.8%
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Fig. S1. FTIR spectra of monomers (black) and corresponding polymerization
products (red), PAF-41 (a), PAF-42 (b), PAF-43 (c) and PAF-44 (d), respectively.



Table S2. Characteristic peaks in FIIR spectra of benzene ring

Category PAFs monomers Product
(Monosubstituted (Disubstituted
Benzene, cm™!) Benzene, cm™!)
C-C PAF-41 | 1586 1596
stretching vibration PAF-42 | 1594 1602
PAF-43 | 1586 1603
PAF-44 | 1582 1602
C-C stretching PAF-41 | 1491 1504
vibration PAF-42 | 1491 1507 & 1483
PAF-43 | 1481 1507 &1481
PAF-44 | 1483 1507
Ring deformation PAF-41 | normal weakened
vibration PAF-42 | normal weakened
710- 695 cm! PAF-43 | normal weakened
PAF-44 | normal weakened

C-H deformation

vibration of ring PAF-41 normal weakened
hydrogens:
] ) PAF-42 | normal weakened
ring CH wagging,

770-730 cm-! PAF-43 | normal weakened
(5 adjacent PAF-44 normal weakened
hydrogens)

CTH d‘eformat'lon PAF-41 | normal enhanced
vibration of ring
hydrogens: 1,4- PAF-42 normal enhanced
disubstituted, CH | PAF-43 normal enhanced
wagging, 860- 800 | pAr_ 44 | normal enhanced

cm! (2 adjacent
hydrogens)
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Fig. S2. PXRD patterns of the PAFs, PAF-41 (black), PAF-42 (blue), PAF-43 (olive),
and PAF-44 (red).
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Fig. S3. TEM images of PAF-41 (a), PAF-42 (b), PAF-43 (c) and PAF-44 (d).
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Fig. S4. CO, and CH, adsorption (solid circles) and desorption (open circles)
isotherms of PAF-41.
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Fig. S5. CO, and CH, adsorption (solid circles) and desorption (open circles)
isotherms of PAF-42.
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Fig. S6. CO, and CH, adsorption (solid circles) and desorption (open circles)
isotherms of PAF-43.
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Fig. S7. CO, and CH, adsorption (solid circles) and desorption (open circles)
isotherms of PAF-44.



Table S3. Porosity data of PAFs synthesized at different temperature.

Product BET surface area BET surface area
(45 °C) (60 °C)
PAF-41 564 m? g! 1119 m? g'!
PAF-42 553 m? g’! 640 m? g’!
PAF-43 500 m? g’! 515 m? g'!

PAF-44 495 m? g-! 532 m2 g’




Table S4. Comparison of CO, uptakes and isosteric heat of adsorption in POFs

. Sget/ CO; uptake s

material m];EgT_l mrznoll) o T (K) K?rtrci))f . Ref

PAF-1 5600 2.05 273 15.6 1
1.09 298

PAF-3 2932 3.48 273 19.2 1
1.81 298

PAF-4 2246 241 273 16.2 1
1.16 298

COF-1 750 2.32 273 2

COF-5 1670 1.34 273 2

COF-6 750 3.84 273 2

COF-8 1350 1.43 273 2

COF-10 1760 1.21 273 2

COF-102 3620 1.56 273 2

COF-103 3530 1.70 273 2

MOP-A 4077 2.65 273 23.7 3
1.45 298

MOP-B 1847 3.29 273 21.8 3
1.63 298

MOP-C 1237 3.86 273 33.7 3
2.20 298

MOP-D 1213 242 273 26.5 3
1.33 298

MOP-E 1470 2.95 273 254 3
1.77 298

MOP-F 653 1.80 273 26.7 3
1.08 298

MOP-G 1056 2.15 273 26.6 3
1.25 298

CMP-1 837 2.05 273 26.8 4
1.18 298

CMP-1-(OH), 1043 1.80 273 27.6 4
1.07 298

CMP-1-(CH3), 899 1.64 273 26.9 4
0.94 298

CMP-1-NH, 710 1.64 273 29.5 4
0.95 298

CMP-1-COOH 522 1.60 273 32.6 4
0.95 298

PPF-1 1740 6.07 273 25.6 5

PPF-2 1470 5.55 273 29.2 5

PPF-3 419 2.09 273 21.8 5
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Table S5. Comparison of CH,4 uptakes and isosteric heat of adsorption in POFs

H k s
material IigEg/l Cm;gll)zl_l © T (K) K? ;ggi‘_l Ref
PAF-1 5600 0.80 273 14.0 1
PAF-3 2932 1.21 273 15.0 1
PAF-4 2246 0.80 273 23.0 1
PPF-1 1740 1.52 273 15.1 5
PPF-2 1470 1.44 273 15.9 5
PPF-3 419 0.63 273 194 5
PPF-4 726 0.83 273 13.9 5
BILP-2 708 0.88 273 18.4 6
0.56 298
BILP-4 1135 1.63 273 13.0 6
1.13 298
BILP-5 599 0.94 273 14.6 6
0.63 298
BILP-7 1122 1.63 273 14.7 6
1.13 298
BILP-3 1306 1.50 273 16.6 8
1.06 298
BILP-6 1261 1.69 273 13.2 8
1.19 298
PAF-41 1119 1.04 273 17.0 this work
0.68 298
PAF-42 640 0.68 273 25.6 this work
298
PAF-43 515 0.60 273 29.8 this work
0.28 298
PAF-44 532 0.66 273 22.9 this work
0.41 298
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