Electronic Supplementary Information (ESI) for

Transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties

Jae Hwa Lee,^{a,‡} Young Jin Sa,^{a,‡} Tae Kyung Kim,^a Hoi Ri Moon^{*a} and Sang Hoon Joo^{*b}

^a Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50
 UNIST-gil, Ulsan 689-798, Republic of Korea. E-mail: hoirimoon@unist.ac.kr
 ^b School of Energy and Chemical Engineering and KIER-UNIST Advanced Center for Energy, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 689-798, Republic of Korea. Fax: 82-52-217-2509; Tel: 82 52 217 2522; E-mail: shjoo@unist.ac.kr

Compound	Mn-MOF
formula	$Mn_2C_{16}N_2O_{10}H_{24}$
crystal system	Triclinic
space group	P-1
fw	514.25
a, Å	6.473(13)
b, Å	7.970(16)
<i>c</i> , Å	10.577(2)
a, deg	101.69(3)
β , deg	102.84(3)
γ, deg	105.70(3)
<i>V</i> , Å ³	491.7(17)
Ζ	1
$ ho_{calcd}$, g cm ⁻³	1.737
temp, K	100(2)
λ, Å	0.69999
μ, mm ⁻¹	1.343
goodness-of-fit (F ²)	1.093
<i>F</i> (000)	264
reflections collected	5533
independent reflections	2865 [$R(int) = 0.0122$]
completeness to θ_{max} , %	88.0
data/parameters/restraints	2865/136/0
θ range for data collection, deg	3.42-33.96
diffraction limits (h, k, l)	$-9 \le h \le 9, -11 \le k \le 11, -15 \le l \le 15$
refinement method	Full-matrix least-squares on F^2
$R_1, wR_2 \left[I > 2\sigma(I)\right]$	$0.0379^a, 0.1079^b$
R_1 , wR_2 (all data)	$0.0384^a, 0.1082^b$
largest peak, hole, eÅ-3	0.973, -0.925

 Table S1. X-ray crystallographic data of Mn-MOF.

 $\overline{{}^{a}R = \Sigma ||Fo| - |Fc||/\Sigma|Fo|} \cdot {}^{b}wR(F^{2}) = [\Sigma w(Fo^{2} - Fc^{2})^{2}/\Sigma w(Fo^{2})^{2}]^{1/2} \text{ where } w = 1/[\sigma^{2}(Fo^{2}) + (0.0573P)^{2} + (0.0573P)^{2} + (0.0000)P], P = (Fo^{2} + 2Fc^{2})/3.$

Mn(1)-O(1)	2.1177(15)	Mn(1)-O(2)	2.1204(16)
Mn(1)-O(3)	2.1097(14)	Mn(1)-O(4)	2.1246(14)
Mn(1)-O(5)	2.0771(18)	Mn(1)-Mn(1) ^{#1}	3.0511(11)
O(1)-Mn(1)-O(2)	157.55(7)	O(1)-Mn(1)-O(3)	85.21(6)
O(1)-Mn(1)-O(4)	88.96(6)	O(1)-Mn(1)-O(5)	99.23(7)
O(2)-Mn(1)-O(3)	89.29(6)	O(2)-Mn(1)-O(4)	87.98(6)
O(2)-Mn(1)-O(5)	103.09(7)	O(3)-Mn(1)-O(4)	157.81(6)
O(3)-Mn(1)-O(5)	98.18(7)	O(4)-Mn(1)-O(5)	103.89(7)

Table S2. Selected bond distances (Å) and angles (deg) of Mn-MOF.

Symmetry transformation used to generate equivalent atoms: $^{\#_1}$, -x+2,-y+1,-z+1

Sample	BET surface area ^{<i>a</i>}	Pore volume ^b	Nanocrystalline size ^c
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)
MnO	146	0.29	5.0
Mn ₃ O ₄	144	0.33	5.6
Mn_5O_8	147	0.33	5.2
Mn_2O_3	39	0.22	20

Table S3. BET surface areas and total pore volumes obtained from nitrogen adsorption analysis, and the nanocrystalline sizes of nanoparticles composing frameworks of manganese oxides.

a BET surface area was obtained in the relative pressure range of 0.05-0.3.

^b Pore volume was calculated at the relative pressure of 0.98-0.99.

^c Nanocrystalline size was calculated by applying the Scherrer equation to the proper reflection of XRPD patterns.

Samula	$3s^a$	$3s^b$	
Sample	(eV)	(eV)	ΔE_{3s}
MnO	82.9	88.7	5.8
Mn ₃ O ₄	83.4	88.6	5.2
Mn ₅ O ₈	84.1	88.7	4.6

Table S4. The peak positions and multiplet splittings deduced from Mn 2p and 3s XPS analyses.

a, *b* Peaks at lower and higher binding energies, respectively

^c Multiplet splitting values between the peaks for lower and higher BEs were obtained from the fitted XPS spectra.

Figure S1. An ORTEP drawing of Mn-MOF with an atomic numbering scheme (thermal ellipsoids at 30% probability). Hydrogen atoms are omitted for clarity. Symmetry operations: $^{#1}$, -x+2, -y+1, -z+1.

Figure S2. XRPD patterns of Mn-MOF: (a) experimental data and (b) simulated pattern from X-ray single-crystal data.

Figure S3. TGA trace of $[Mn_2(BuTC)(DMA)_2]_n(Mn-MOF)$. The result indicates that 34.4% weight loss at 200 – 300 °C, corresponding to the loss of 2 DMA molecules (calc. 33.9%), followed by additional weight loss at ~400°C, corresponding to decomposition of Mn-MOF.

Figure S4. Pore size distribution of the nanoporous manganese oxides obtained by BJH method from desorption branch of N_2 physisorption isotherm

Figure S5. Characterization of an Mn_2O_3 sample: (a) XRPD pattern, (b) nitrogen adsorption–desorption isotherms, and (c,d) TEM images.

Figure S6. LSV polarization curves for the ORR measured at different rotating rates: (a) nanoporous Mn_3O_4 , and (b) nanoporous Mn_5O_8 .

Figure S7. Nyquist plots of the manganese oxide samples obtained by impedance spectra at a fixed potential of 0.7 V (vs. RHE) in O₂-saturated 0.1 M KOH.

Figure S8. LSV polarization curves for the nanoporous Mn_5O_8 , Mn_3O_4 , and MnO measured at 1600 rpm in O₂-saturated 0.1 M KOH