Electronic Supplementary Information

Engineering ZnCo-Layered Double Hydroxide Nanowalls toward High-Efficiency Electrochemical Water Oxidation

Ying Li, Lu Zhang, Xu Xiang*, Dongpeng Yan*, and Feng Li

State Key Laboratory of Chemical Resource Engineering,

Beijing University of Chemical Technology, Beijing, 100029, China

Fig. S1 Digital photo of ZnCo-LDH-100 film directly grown on a flexible Ni foil

Fig. S2 Cross-sectional SEM images of ZnCo-LDH nanowalls (A) ZnCo-LDH-50, (B) ZnCo-LDH-100, (C) ZnCo-LDH-150, (D) ZnCo-LDH-180. The film thickness is approximately 480, 510, 570 and 600 nm, respectively.

Fig. S3 (A) SEM image of ZnCo-LDH-100 sample, (B) the elemental analyses, (C) and (D) EDX mapping of Zn and Co elements

Fig. S4 HAADF image (A) and EDX mappings (B) and (C) of ZnCo-LDH-100

Fig. S5 XPS core level spectra of Co2p in the ZnCo-LDH-100

Fig. S6 LSV curves tested in 1 M KOH solution with ZnCo-LDH films and Co-OH as electrocatalysts.

Fig. S7 LSV curves tested in 0.1 M KOH solution with ZnCo-LDH films at longer deposition time

Fig. S8 LSV curves of ZnCo-LDH-100 films with addition of H_2O_2 (black) and without H_2O_2 (red) during the preparation of films, the LSV was tested in 0.1 M KOH solution.

Fig. S9 Digital photos of ZnCo-LDH-100 films on Ni substrate before (left) and after (right) OER operation of 2 hr at an applied potential of 1.667 V

Fig. S10 Tafel plots of ZnCo-LDH electrocatalysts and the control samples

Fig. S11 Cyclic voltammogram curves of ZnCo-LDH-150 under different scan rate tested in 0.1 M KOH solution.

Fig. S12 Linear relationship of the peak current of Co³⁺/Co²⁺ oxidation wave with the scan rate (a) Co-OH, (b) ZnCo-LDH-50, (c) ZnCo-LDH-100, (d) ZnCo-LDH-150, (e) ZnCo-LDH-180

Fig. S13 Current-time curve during OER with ZnCo-LDH-100 as electrocatalyst at an applied potential of 1.767 V

Fig. S14 LSV curves of ZnCo-LDH-100, before OER (black) and after 1 h OER operation (red) (tested in 0.1 M KOH)

Catalyst	ZnCo-LDH-50	ZnCo-LDH-100	ZnCo-LDH-150	ZnCo-LDH-180
Mass (mg) ^a	0.22	0.32	0.37	0.42
Mass activity $@\eta_{=400mV}(A/g)^b$	2.3	5.8	3.2	2.1
Mass activity $@\eta_{= 450mV}(A/g)$	11	21	11	8.3
Mass activity @η _{= 500mV} (A/g)	36	51	32	24

Table S1 Comparison of ZnCo-LDH electrocatalysts based on a mass activity

^a The mass was calculated by weighing the mass of Ni foil before and after the electrodeposition reactions.

^b The current values were obtained from LSV curves tested in 0.1 M KOH solution.

Catalyst	Current density(mA/cm ²)	η (mV)	рН	TOF(s ⁻¹)	Refs
ZnCo-LDH-100	0.67	300	14	0.0245	This work
ZnCo-LDH-100	0.917	330	14	0.045	This work
Co ₃ O ₄	/	328	14	0.0187	[1]
Co ₃ O ₄	/	300	14	0.04	[2]

Table S2 Electrochemical performance comparison of ZnCo-LDH and Co₃O₄ OERcatalysts reported in the literatures

Catalyst	Current density (mA/cm ²)	η (mV)	Tafel slope (mV/dec)	TOF(s ⁻¹)	рН	Refs
ZnCo-LDH-100	0.26	330	83	0.025	13	This work
ZnCo-LDH-100	0.67	300	61	0.0245	14	This work
IrO ₂	0.5	300	/	/	13	[3]
RuO ₂	0.7	300	/	/	13	[3]
IrO ₂	11 ^a	300	/	0.02	13	[3]
IrO _x	15 ^a	300	49	0.009	14	[4]

Table S3 Electrochemical performance comparison of ZnCo-LDH and IrO2 or RuO2 OER catalysts reported in the literatures

^a The values are in unit of A/g.

References

1. A. J. Esswein, M. J. McMurdo, P. N. Ross, A. T. Bell and T. Don Tilley, J. Phys. Chem. C, 2009, 113, 15068-15072.

2. N. H. Chou, P. N. Ross, A. T. Bell and T. D. Tilley, ChemSusChem, 2011, 4, 1566-1569.

3. Y. M. Lee, J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, *J. Phys. Chem. Lett.*, 2012, **3**, 399-404.

4. L. Trotochaud, J. K. Ranney, K. N. Williams and S. W. Boettcher, *J. Am. Chem. Soc.*, 2012, **134**, 17253-17261.