Supporting information

Eu³⁺ post-functionalized nanosized metal-organic framework for cation exchange-based Fe³⁺-sensing in aqueous environment

You Zhou^a, Hao-Hong Chen^b, Bing Yan*,^a

a Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, China b Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Figure S1. TEM image of nanocrystals of 1

Figure S2. PXRD pattern of Eu³⁺@1 nanocrystals.

Figure S3. TEM image of Eu³⁺@1 nanocrystals.

Figure S4. FTIR spectra of nanocrystals of $Eu^{3+}@1$.

Figure S5. The excitation and emission spectra of compound 1.

Figure S6. Day-to day fluorescence stability of $Eu^{3+}@1$ in aqueous solution.

Figure S7. Effect of pH (aqueous solution) on the fluorescence intensity of $Eu^{3+}@1$.

Figure S8. Photographs of aqueous solutions of $Eu^{3+}@1$ in the presence and absence of Fe3+ (0.4 g L⁻¹).

Figure S9. PXRD pattern of MIL-53-COOH (Fe).

Figure S10. The DR UV–vis spectra of $Eu^{3+}@1$ and Fe- $Eu^{3+}@1$.

SampleSpace
groupa/Åb/Åc/Å $\beta/^{\circ}$ MIL-53-COOH (Al)imma6.546915.96513.51790

Table R1. Lattice parameter of MIL-53-COOH (Al)