Electronic Supplementary Information

Novel Synthetic route for the preparation of core shell like carbon-supported nanoparticles with a Pt-rich shell

Youngick Cho, Woong Hee Lee, and Hansung Kim*

Figure S1. TGA result of $Pt_2Ni_1/C(PPy-900)$. The temperature was increased at a rate of 10°C min⁻¹ to 900 °C and it was maintained for 1 hr.

Figure S2. HR-TEM images of (a) Pt supported on the CNF supports by polyol process,(b) PPy-coated Pt/CNF, (c) Pt₃Co₁/CNF prepared by PPy coating process, and (d) Pt₃Co₁/CNF without PPy coating.

Figure S3. Cyclic voltammograms (CV) for as-prepared catalysts obtained in $0.5 \text{ M H}_2\text{SO}_4$ saturated with N₂ at a scan rate of 5 mV s⁻¹.

 Catalyst
 H_{UPD} ($m^2 g^{-1}$)
 CO stripping ($m^2 g^{-1}$)

		~ .						~ ~				
voltammetr	у.											
Table S1.	Comparison	of the	ECSAs	calculated	based	on	cyclic	voltammogram	(H _{UPD})	and	CO	stripping

	(mg)	(m g)	
Pt/C	52.8	51.7	
Pt ₂ Ni ₁ /C(PPy-900)	37.3	38.4	
$Pt_2Ni_1/C(900)$	29.6	29.8	

Figure S4. HR-TEM images of Pt₂Ni₁/C(NaBH₄-25).

Figure S5. ORR polarization curves for 50 wt% $Pt_2Ni_1(PPy-800)$, 50 wt% $Pt_2Ni_1(PPy-900)$ and 50 wt% $Pt_2Ni_1(PPy-1000)$ obtained in 0.1 M HClO₄ saturated with O₂ at a scan rate of 5 mV s⁻¹ and a rotation rate of 1200 rpm.

Figure S6. Polarization curves measured by MEA using as-prepared catalysts as the cathode with $0.1 \text{mg}_{\text{metal}}$ cm⁻¹ loading. H₂ and O₂ gases with RH100% were fed to anode and cathode respectively. The cell temperature and operating pressure were 80°C and 1atm.

Figure S7. Tafel plots measuring mass activities of MEA normalized by Pt loading of cathode. The measuring c onditions are H_2/O_2 at 80°C and 1.5atm